Testing Progress Properties for
Distributed Components

Paul Sivilotti
Dept. of Computer and Information Science
The Ohio State University

paol o@i s. ohi o-state. edu

Conclusions

Locality is important

— global properties are hard to gather (and test)
Specifying and testing safety is not

enough

— complete specifications include progress

properties too

formal methods
& specification

« ltispossible to test progress in a limited

sense

— even though the testing is limited, still useful } validation

« Work in progress: application to

CORBA

Observation #1: Importance of Locality

» Often, properties of interest are global.
— invariant: # tokens in system = 1
 Testing such properties requires gathering global
state.
— for stable properties, can calculate a snapshot
— expensive communication overhead
 Alternative: collections of local properties only.
— no component creates (or destroys) tokens
— can be easily tested (locally) for each component
» This simple observation has some ramifications...

Requires-Ensures Specifications

< Sequential specifications are often based on

pre/post conditions.

IDL

interface Stack {

long pop ();
N

void push (long v); ﬂ]]]]]]]]]]]]]]]]](l]]]»

performance

IDL++

interface Stack {
state: sequence<int> Q;
state: int MaxSize = 100;
void push (long v);
requires: |Q|<MaxSize
modifies:
ensures: Q=‘Q++v
long pop ();
...efc...

Problem: Precondition Paradox

« In sequential systems, the requires clause is the
client’s responsibility.

Client.cpp
Stack s;

if (sfull) {
/lassert: Stack sisnot full
s.push(3)

Problem: Precondition Paradox

« Indistributed systems, there may be more than

one client!

Clientl.cpp

it (tsfull() {

/lcan Stack s be full?
s.push(3)

}

/v{ Stack s

Client2.cpp

* “Requires” is a property of entire system!

Implication: Trivial “Requires” Clauses

« So, a more appropriate way to specify push:
void push (long v);
requires: true
modifies: Q
ensures: | Q|<MaxSize ==> Q=‘Q++V
« If non-trivial “requires” clause is used:
— is often a system property

— expensive (potentially impossible) for client to check

Observation #2: The Need for Progress

It is tempting to think of servers as objects and
messages as method invocations.

— encouraged by popular middleware implementations

« Then use familiar specs from sequential objects.

¢ These specs do not address progress.
— “something eventually happens”

« Progress really is needed for peer-to-peer systems.
— acomponent that guarantees a reply (e.g. bidders)

— a component that accepts messages while working (e.g.
a distributed branch & bound tree search)

Transience

Fundamental operator: transient

transient.P means:

— if P is ever true, eventually it becomes false
* transient.(#tokens_received > #tokens_sent)

— and, this transition is guaranteed by a single action
» each process responsible for returning its tokens

» Enjoys a nice compositional property:

— transient.P.C ==> transient.P.(C||S)

— unlike leads-to, transient properties preserved under
composition

Observation #3: Testing Transience

« Like any progress property, can never detect its
violation

— how long to we wait before giving up?
 Since we it cannot be tested, don’t.
¢ But what do programmers do in practice?
— observe possible progress bug
— abort program and insert print statements!

— 50 programmers do have some intuition about how
“quickly” to expect progress

» Programmers would benefit from tool support.

Our Extensionsto CORBA IDL

Augmented
IDL Parser

skeletons
+ checks

CORBA Bus

Example: Dining Philosopher

« Philosophers do not “eat” forever.

interface Philosopher {

state: enum{t,h,e} s;
transient: (s==¢€)
void grant_fork();

}

void Philosopher::grant_fork() {
/lgenerated testing code
/luser-supplied code
/lgenerated testing code

> s _
S 5 T -z
Mm M m W = M B 3
H e =0 n% V_ wmw 1] wwmw
- 38 g = 1S
w o B 5 M.yr % M)mw%
[ofE=] T > =
32] 2 ST 2
5 2 §< BER £ Qisgnts
. = wm“ 7% 09 maavc_
2 & 28 $P% § ET_Ssm
2} < < E > a =3
m s MWM B mm I Amumm5
= £ = §8 8%%® g Mm.mmm 5
M.w,m:ﬂm Qe _ B /m\.w,m.saEF
W SoY%EESE F8,9¢ R T
2 4 £ B° oo ko] S 2
o Bcg>E = 2193 E glilleEg>
S igfyig zgPit fiictis
g a.mm..mm\m zE2= zEE= 2=
bt S88EE s ~ =
> w
LL

uonIsue) Ise| Jo awn —
anJ} 31 3Yew 0} Papasu ¥ JO anfeA —
as|ey 10 anuy si ajeaipald Jaylaym —

own :pI028Y o

j

‘awin e e snoJabuep,, S1 81e21paid U0 1SOW 1 «
"(3) Awwinp 8y} JO anjeA SaulwJalap 81els 19.IISqY o

w oW

N - O

JouaISUel | [euoouNS

***3AIjeUIB)|e Ue SI 918y} ‘Sased Auew u|

‘[eonoead Jou SI SaLI01SIY asay} ||e Buidaay)

0 (1 = ouew)usisuel [(0 = dUiew) Jusisues)

i3 yoes 10j auo)

S3II01SIY JO J3qWINU 8}iUljul UB 0} Spuodsaliod Siy L
0 (3 = oudw)jusisuely :: ¥ ‘ba —

‘paignuenb aie sanuadoud juaisuely Auen

douBsURI | pUR UoIRdIjhuend

e();
e();

et_current_tim

et_current_tim

=g

P

(* predicate)(state);
P

(* predicate)(state);
g

if (holds)

time_stam

time_stam
b

holds

Transient History Class

if (tholds & & b)

boolean b

void initialize (const AbstractState& state) {
holds

boolean (* predicate)(const AbstractState&);
void update (const AbstractState& state) {

boolean holds;
long time_stamp;

}

struct TransientHistory {

USNILIM 30 I1SNW 8)e1S J9BJISTE JO UOIeNn|eAs —
paresauab aq ued sajeslpaid awos —

159 0} a1eaIpald ay Joy Jayutod uonouny —
‘prepue)s si ssejd AIoisiH

‘poyrsw yoea Jaye Aloisiy arepdn

anJ) aweoaq 1se|) Uaym —

as|ey 10 anuj si ayeaipaid Jaylaym —

‘Ai01s1y e dasy| ‘arealpaud juaisuel] yoes o4

KlosIH wssuel |

awn

1 apeoipaid

iJabuep j1abuep

1

X o
Sapls

E]

Jaydoso|iyd 2|duex3

awn

Augmented IDL Parser

» User provides annotations in IDL
- given as pragmas
« Automatically generated in skeleton code:
— classes for abstract state and predicate histories
— functions that calculate these predicates
— functions to calculate functional transient dummies
— calls to initialize and update these histories
— function headers for required abstraction function
 Tester provides in skeleton code:
— body of the abstraction function

Introduction

Locality is important

— global properties are hard to gather (and test) performance

Specifying and testing safety is not

enough

— complete specifications include progress
properties too

It is possible to test progress in a limited

sense

— even though the testing is limited, still useful

Work in progress: application to

CORBA

formal methods
& specification

validation

