
1

Testing Progress Properties for
Distributed Components

Paul Sivilotti

Dept. of Computer and Information Science

The Ohio State University
paolo@cis.ohio-state.edu

Conclusions

• Locality is important
– global properties are hard to gather (and test)

• Specifying and testing safety is not
enough
– complete specifications include progress

properties too

• It is possible to test progress in a limited
sense
– even though the testing is limited, still useful

• Work in progress: application to
CORBA

performance

validation

formal methods
& specification

Observation #1: Importance of Locality

• Often, properties of interest are global.
– invariant: # tokens in system = 1

• Testing such properties requires gathering global
state.
– for stable properties, can calculate a snapshot

– expensive communication overhead

• Alternative: collections of local properties only.
– no component creates (or destroys) tokens

– can be easily tested (locally) for each component

• This simple observation has some ramifications…

Requires-Ensures Specifications

• Sequential specifications are often based on
pre/post conditions.

IDL

interface Stack {
 void push (long v);
 long pop ();
};

IDL++

interface Stack {
 state: sequence<int> Q;
 state: int MaxSize = 100;
 void push (long v);
 requires: |Q| < MaxSize
 modifies: Q
 ensures: Q = ‘Q ++ v
 long pop ();
 …etc...
};

Stack s;
…

 s.push(3)

Client.cpp

Problem: Precondition Paradox

• In sequential systems, the requires clause is the
client’s responsibility.

//assert: Stack s is not full
if (!s.full()) {

}

if (!s.full()) {

 s.push(3)
}

Client1.cpp

Problem: Precondition Paradox

• In distributed systems, there may be more than
one client!

//can Stack s be full?

Stack s

Client2.cpp

• “Requires” is a property of entire system!

2

Implication: Trivial “Requires” Clauses

• So, a more appropriate way to specify push:

• If non-trivial “requires” clause is used:
– is often a system property

– expensive (potentially impossible) for client to check

void push (long v);
 requires: true
 modifies: Q
 ensures: |‘Q| < MaxSize ==> Q = ‘Q ++ v

Observation #2: The Need for Progress

• It is tempting to think of servers as objects and
messages as method invocations.
– encouraged by popular middleware implementations

• Then use familiar specs from sequential objects.

• These specs do not address progress.
– “something eventually happens”

• Progress really is needed for peer-to-peer systems.
– a component that guarantees a reply (e.g. bidders)

– a component that accepts messages while working (e.g.
a distributed branch & bound tree search)

Transience

• Fundamental operator: transient

• transient.P means:
– if P is ever true, eventually it becomes false

• transient.(#tokens_received > #tokens_sent)

– and, this transition is guaranteed by a single action

• each process responsible for returning its tokens

• Enjoys a nice compositional property:
– transient.P.C ==> transient.P.(C||S)

– unlike leads-to, transient properties preserved under
composition

Observation #3: Testing Transience

• Like any progress property, can never detect its
violation
– how long to we wait before giving up?

• Since we it cannot be tested, don’t.

• But what do programmers do in practice?
– observe possible progress bug

– abort program and insert print statements!

– so programmers do have some intuition about how
“quickly” to expect progress

• Programmers would benefit from tool support.

Our Extensions to CORBA IDL

stubs
skeletons
+ checks

IDL
+ spec Augmented

IDL Parser

Example: Dining Philosopher

• Philosophers do not “eat” forever.

void Philosopher::grant_fork() {

}

//user-supplied code

interface Philosopher {

 void grant_fork();
}

//generated testing code

//generated testing code

 state: enum{t,h,e} s;
 transient: (s == e)

3

E
xa

m
pl

e:
 P

hi
lo

so
ph

er

st
at

e
s

ti
m

e

te h

pr
ed

ic
at

e
s

=
=

 e
FT

da
ng

er
!

da
ng

er
!

ti
m

e

T
ra

ns
ie

nt
 H

is
to

ry

•
F

or
 e

ac
h

tr
an

si
en

t p
re

di
ca

te
, k

ee
p

a
hi

st
or

y.
–

w
he

th
er

 p
re

di
ca

te
 is

 tr
ue

 o
r

fa
ls

e

–
w

he
n

it
 la

st
 b

ec
am

e
tr

ue

•
U

pd
at

e
hi

st
or

y
af

te
r

ea
ch

 m
et

ho
d.

•
H

is
to

ry
 c

la
ss

 is
 s

ta
nd

ar
d.

–
fu

nc
ti

on
 p

oi
nt

er
 f

or
 th

e
pr

ed
ic

at
e

to
 te

st

–
so

m
e

pr
ed

ic
at

es
 c

an
 b

e
ge

ne
ra

te
d

–
ev

al
ua

ti
on

 o
f

ab
st

ra
ct

 s
ta

te
 m

us
t b

e
w

ri
tt

en

Transient History Class

struct TransientHistory {
 boolean holds;
 long time_stamp;
 boolean (*predicate)(const AbstractState&);

 void initialize (const AbstractState& state) {
 holds = (*predicate)(state);
 if (holds)
 time_stamp = get_current_time();
 }

 void update (const AbstractState& state) {
 boolean b = (*predicate)(state);
 if (!holds && b)
 time_stamp = get_current_time();
 holds = b;
 }
};

Q
ua

nt
if

ic
at

io
n

an
d

T
ra

ns
ie

nc
e

•
M

an
y

tr
an

si
en

t p
ro

pe
rt

ie
s

ar
e

qu
an

tif
ie

d.
–

e.
g.

 〈
∀

k
::

tra
ns

ie
nt

.(m
et

ric
 =

 k
)

〉

•
T

hi
s

co
rr

es
po

nd
s

to
 a

n
in

fi
ni

te
 n

um
be

r
of

 h
is

to
ri

es
(o

ne
 f

or
 e

ac
h

k)
!

tra
ns

ie
nt

.(m
et

ric
 =

 0
) ∧

 tr
an

sie
nt

.(m
et

ric
 =

 1
) ∧

 …

•
K

ee
pi

ng
 a

ll
th

es
e

hi
st

or
ie

s
is

 n
ot

 p
ra

ct
ic

al
.

•
In

 m
an

y
ca

se
s,

 th
er

e
is

 a
n

al
te

rn
at

iv
e…

Fu
nc

tio
na

l T
ra

ns
ie

nc
e

•
A

bs
tr

ac
t s

ta
te

 d
et

er
m

in
es

 v
al

ue
 o

f
th

e
du

m
m

y
(k

).

•
A

t m
os

t o
ne

 p
re

di
ca

te
 is

 “
da

ng
er

ou
s”

 a
t a

 ti
m

e.

•
R

ec
or

d:
–

w
he

th
er

 p
re

di
ca

te
 is

 tr
ue

 o
r

fa
ls

e

–
va

lu
e

of
 k

 n
ee

de
d

to
 m

ak
e

it
 tr

ue

–
ti

m
e

of
 la

st
 tr

an
si

ti
on

m
et

ri
c

m

ti
m

e

02 13

Functional Transience History

struct FunctionalTransientHistory {
 boolean holds;
 long time_stamp;
 int free_var;
 int (*dummy)(const AbstractState&);
 boolean (*predicate)(const AbstractState&, int);

 void initialize (const AbstractState& state) {
 free_var = (*dummy) (state);
 holds = (*predicate) (state, free_var);
 if (holds)
 time_stamp = get_current_time();
 }

 void update (const AbstractState& state) {
 int v = (*dummy) (state);
 int b = (*predicate) (state, v);
 if ((!holds && b) || ((v != free_var) && b))
 time_stamp = get_current_time();
 holds = b;
 free_vars = v;
 }
};

4

Augmented IDL Parser

• User provides annotations in IDL
– given as pragmas

• Automatically generated in skeleton code:
– classes for abstract state and predicate histories

– functions that calculate these predicates

– functions to calculate functional transient dummies

– calls to initialize and update these histories

– function headers for required abstraction function

• Tester provides in skeleton code:
– body of the abstraction function

Introduction

• Locality is important
– global properties are hard to gather (and test)

• Specifying and testing safety is not
enough
– complete specifications include progress

properties too

• It is possible to test progress in a limited
sense
– even though the testing is limited, still useful

• Work in progress: application to
CORBA

performance

validation

formal methods
& specification

