Specifying and Testing the Progress Properties of
Distributed Components

Paolo A. G. Sivilotti
Department of Computer and Information Science
The Ohio State University
Columbus, OH 43210-1277
paolo@cis.ohio-state.edu

May 4, 1999

Abstract

The specification of a distributed component is typically a syntactic
definition of its interface (e.g., the function signatures). Several projects,
inspired by testing frameworks for sequential systems, have extended these
syntactic definitions to provide behavioral information (e.g., preconditions
and postconditions). For distributed components, however, there are two
aspects to such a behavioral specification: safety and progress. While
the former has received considerable attention in the component testing
community, the latter has largely been ignored. We have developed a
methodology for specifying progress properties in a manner that lends
itself to testing (in the limited sense in which testing progress is possible).
Our approach is presented as a simple extension of CORBA IDL. We are
implementing an IDL parsing tool that uses this extended IDL notation
to semi-automatically generate the code harnesses required to test and
debug progress properties.

Keywords: progress, transient, CORBA IDL

1 Introduction

The development of component-based distributed systems has recently been fa-
cilitated by the development of middleware technologies and standards such as
CORBA [16], Java RMI [23], and DCOM [6]. At their core, these technologies
provide the communication functionality between remote components. The in-
terfaces for these components are typically defined by the signatures (argument
types, function name, return type) of the exported functions. Such interface
definitions do not provide any semantic information about function behavior.

The limitations of such interface definitions have long been recognized. Pro-
posals to extend these definitions fall into two categories. The first approach
is to augment function signatures with “requires” and “ensures” clauses as are
used in sequential systems [13]. Because these specifications are so similar to
those used in sequential systems, they are familiar for designers and (relatively)
natural to write. Certain subtleties, however, arise in their use in distributed
systems. For example, since there may be many concurrent threads of execution,
the caller of a function cannot unilaterally guarantee that the required precon-
ditions hold when the function begins executing. This phenomenon, termed the
“precondition paradox” [14, Chapter 30], has been neglected by many specifi-
cation methodologies. An even more fundamental limitation of this approach is
its failure to express progress properties. These properties are inherent in the
specification of reactive systems and of many peer-to-peer distributed systems.

The second approach to specify components of distributed systems is based
on temporal logic [11]. Some temporal requirements are placed on the behavior
of the environment and — if these requirements are satisfied — the component is
guaranteed to satisfy some other temporal properties [8]. This approach does
permit the specification of progress properties. However, these specification
notations are often very formal and the temporal operators somewhat unnatural
for developers to write. Also, these notations are usually not considered in
conjunction with practical testing and debugging techniques. The environment
on which the requirements are placed typically consists of multiple distributed
components. To test whether the environment satisfies these properties (akin to
testing the precondition in the first approach) may require gathering global state
information, so it is often not practical. Testing, however, is vitally important in
the development of real systems and the lack of support for testing has impeded
the adoption of these temporal specification methodologies.

We have developed a specification technique [22] that combines the strengths
of the two approaches outlined above: It permits the specification of progress
properties while at the same time providing support for testing. The method-
ology is based on a very simple operator: transient. It is consistent with
practical testing since we restrict properties to local predicates. We are cur-
rently implementing a tool that integrates our specification primitives with the
testing and debugging cycles of distributed system development. This tool is
being developed as an extension of a CORBA-compliant object request broker
(ORBacus [17]).

2 Specifying Progress

Many different temporal operators have been used to capture progress prop-
erties. Examples include < (pronounced “eventually”) [11], ensures [3],
leads — to [20], — (pronounced “to always”) [4], and transient [15]. For
the specification of progress in distributed components, we choose transient

as our fundamental operator.

The property transient.P holds for a program in which if predicate P
is true at any point, it is guaranteed to be false at some later point. For
example, consider a component that requires critical access to some shared
resource. When the component is using the shared resource, it is in a state
Critical . The property that this use is finite can be expressed:

transient.Critical

We choose transient as our fundamental operator for expressing progress
for two reasons. Firstly, it enjoys a nice property under composition: If transient.P
is a property of some component, it is a property of any system in which that
component is used. Secondly, when the predicate P islocal to a single compo-
nent, transient.P lends itself to testing, as we describe in Section 3.

3 Testing and Debugging Progress

Informally, safety properties say that “nothing bad can happen” while progress
properties say that “something good happens eventually” [10]. One implication
of this definition is that safety properties can be violated by a finite execution,
while progress properties cannot. Safety properties can therefore be tested at
run-time. If a safety property is violated, an exception can be raised, an error
message can be displayed, the program can be aborted, or some other action
can be taken. A progress property, on the other hand, says nothing about how
quickly an event will occur. It is therefore not possible to detect, at run-time,
the violation of a progress property.

It is possible, however, to detect when progress has not been satisfied in
a very long time. Indeed, developers often have an intuition about how long
to wait for a progress property to be satisfied. At the same time, progress is
a subtle requirement on component behavior and it is common for developers
to make mistakes in this part of the implementation. It is therefore helpful to
provide support for debugging a program that appears to be violating a progress
property.

In order to monitor the potential violation of a transient property, we
make use of a time-stamped history. For example, consider the property

transient.Critical

By testing whether the predicate Critical is true for a component initially
and after the execution of each function, we can detect when the predicate
becomes true. When the predicate becomes true, a time-stamp is stored for
this event. When the predicate becomes false, the time-stamp is cleared. If the
tester suspects a lack of progress in the program and aborts the execution, the
transient predicates can each be examined to see which is currently true and

which have been true for the longest amount of time. This gives the tester an
indication of where to look for the suspected error.

Notice that this testing methodology is consistent with current practices for
debugging a lack of progress. When deadlock is suspected, developers frequently
insert print statements in an attempt to observe in which state their application
becomes deadlocked. When the program appears to reach a fixed state, the
execution is aborted and the fixed state is examined in an attempt to unravel
how this point was reached. Our methodology automates this ad hoc approach
by collecting the required information about which progress requirements have
failed to be satisfied.

One subtlety in the collection of this information is in how to handle the
quantification of transient properties. In the discussion above, we have pos-
tulated maintaining a single time-stamp history for each transient property.
Often, however, these properties are used within a universal quantification. For
example, the requirement that the value of a variable z eventually change is
written:

(Vk : ke IN : transient.(x = k))

This corresponds to an infinite number of transient predicates:
transient.(x = 0) A transient.(x =1) A transient.(x =2) A ---

Clearly, keeping a time-stamp for each of these properties is not feasible.

To address this concern, we have defined the notion of functional transience
[22]. A transient property is said to be functionally transient when the truth of
its predicate functionally determines the values of the dummy variables involved.
In the example given above, the truth of the predicate z = k determines, as
a function of the component state (i.e., variable z), the value of the dummy
variable (i.e., k). In general, a transient property with dummy variables
taken from a set I and component variables taken from a set V' has a predicate
of the form p.(I, V) and can be written as

(Vi: i€eI: transient.(p.(I,V)))
This property is said to be functionally transient when:
(Vi:iel: (3f;: p.(LLV) = i=£V))

We also introduce a special syntax for functionally transient properties, writing
them as:
(Vi:ie€eI: i:=£.V) in transient.(p.(I,V))

For example, this notation allows us to write the quantification
(Vk : k € N : transient.(Critical A metric = k))

as
(k := metric) in transient.(Critical A metric = k)

instead. One advantage of this notation is that it makes explicit the functional
dependence of the dummies on the component state, simplifying the automatic
generation of the required time-stamp history.

The utility of functional transience lies in the simplicity of detecting whether
it has been satisfied. A functionally transient property is satisfied when either
the values of the dummies change or the predicate becomes false for any value
of dummies. In the previous example, the transience requirement is satisfied
by metric changing (and hence the value of k£ changing) or by the predicate
Critical becoming false. This reduces the number of time-stamp histories from
an impractical number (one for each possible value of metric) to simply one.

4 An Augmentation of CORBA IDL

Our liveness specification and debugging mechanism is realized in the context
of CORBA. The CORBA standard for distributed object systems defines an
implementation-language independent notation for describing interfaces (IDL).
We extend this notation with keywords that allow the specification of liveness
based on the notions of transience and functional transience as discussed above.

First, the interface of an object in CORBA IDL does not contain any in-
stance data. The predicates that are transient, however, are predicates on the
object state (i.e., instance data). Since requiring an object to export its instance
data in the interface would be a violation of encapsulation, we instead require
the interface to contain a description of an abstract state. For example, the
IDL specification of a Worker object, augmented with abstract state, is given in
Figure 1. (The use of pragmas to extend the IDL language means that these ex-
tended interfaces remain compatible with standard CORBA implementations.)
Liveness properties are given in terms of this abstract state. For the Worker
object, a simple transient property might be that the object does not remain
in the Working state forever.

interface Worker {
#pragma state enum {Idle, Working} current_state;
#pragma state long metric;
#pragma {k := metric} in_transient ((current_state == Working) \
&% (metric == k))

oneway void Job ();

};

Figure 1: Interface of Worker Object Extended to Include Transient Property

The time-stamp history required to monitor transience is implemented by
a structure with three components: a pointer to the predicate (i.e., a function

on the abstract state that returns a boolean), whether or not the predicate
currently holds, and the time-stamp when the predicate last became true. The
structure used to implement this history is given in Figure 2. The initialize()
function is called when the object is first created and the update () function is
called at the end of every function.

struct TransientPredicate {
boolean holds;
long time_stamp;
boolean (*predicate) (const AbstractStated);

void initialize (const AbstractState& state) {
holds = (*predicate) (state);
if (holds)
time_stamp = get_current_time();

3

void update (const AbstractState& state) {
boolean b = (*predicate) (state)
if ('holds && b)
time_stamp = get_current_time();
holds = b;
}
};

Figure 2: Data Structure for Maintaining Time-Stamp History

It is important to note that the code given in Figure 2 can be generated
automatically from the IDL definition of the Worker object. In fact, this au-
tomatic generation of skeleton code from the IDL definition is consistent with
the typical development cycle for CORBA applications. The preliminary design
of our tool is based on the ORBacus [17] implementation of the CORBA 2.0
standard.

5 Related Work

Semantic extensions to interface definitions for distributed components are not
new. The definition in CORBA of a implementation language independent
notation for defining interfaces is a particularly attractive vehicle for seman-
tic specification constructs. It is not surprising, then, that several proposals
have been made to extend CORBA IDL. The Object Management Group, orig-
inators of the CORBA standard, have formed a working group to investigate
different proposals for semantic extensions. ADL [19] is an assertional exten-
sion of CORBA IDL developed at Sun Microsystems. Larch [7] is a two-tiered

specification language that has been applied to a variety of implementation lan-
guages, including CORBA [21]. AssertMate [18] is a preprocessor that allows
assertions to be embedded in Java methods. Our approach differs from this body
of work in its capacity to express progress properties and hence its applicability
to reactive and peer-to-peer distributed systems.

The notions of safety and progress were first identified by Lamport [10]. The
ability to express any property as a combination of safety and progress was later
established by Alpern and Schneider [2]. Temporal specifications in the spirit
of “design-by-contract” having been developed to express component behavior
contingent on the behavior of the larger system. Examples of this approach
include: rely-guarantee [8], hypothesis-conclusion [3], assumption-commitment
[5], offers-using [9], modified rely-guarantee [12], and assumption-guarantee [1].
Our approach differs from this body of work in our emphasis on testing. Because
progress properties are restricted to local predicates, we are able to monitor
whether these progress properties are being satisfied.

6 Summary

Our method for specifying the progress properties of components in a distributed
system is based on a single simple temporal operator: transient. With a
pragma-based extension of CORBA IDL, transient properties are expressed as
part of a component interface. Furthermore, this augmented interface specifi-
cation can be used to generate a testing harness that monitors whether or not
the specified progress properties are satisfied. Testing the specified properties
is feasible because the predicates involved are restricted to the local state of a
single component.

We have not addressed the specification of safety properties. Our approach,
however, is consistent with the assertional methods that do capture safety. The
transient operator can be easily integrated with the precondition and post-
condition based approaches to provide a more expressive specification notation,
while retaining the ability to test for violations of the specification.

References

[1] Martin Abadi and Leslie Lamport. Composing specifications. ACM Trans-
actions on Programming Languages and Systems, 15(1):73-132, January
1993.

[2] B. Alpern and F. B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181-185, October 1985.

[3] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Founda-
tion. Addison-Wesley Publishing Company, Reading, Massachusetts, 1988.

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. Mani Chandy and Beverly A. Sanders. Predicate transformers for rea-
soning about concurrent computation. Science of Computer Programming,
24(2):129-148, April 1995.

Pierre Collette. Composition of assumption-commitment specifications in
a UNITY style. Science of Computer Programming, 23:107-125, December
1994.

Guy Eddon and Henry Eddon. Inside Distributed COM. Microsoft Press,
April 1998.

John V. Guttag, James J. Horning, S. J. Garland, K. D. Jones, A. Modet,
and J. M. Wing. Larch: Languages and Tools for Formal Specification.
Springer-Verlag, New York, New York, 1993.

C. B. Jones. Tentative steps toward a development method for interfering
programs. ACM Transactions on Programming Languages and Systems,
5(4):596-619, 1983.

S.S. Lam and A. U. Shankar. A theory of interfaces and modules 1: Compo-
sition theorem. IEEE Transactions on Software Engineering, 20(1):55-71,
January 1994.

Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, SE-3(2):125-143, March 1977.

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Con-
current Systems, volume 1. Specification. Springer-Verlag, 175 Fifth Av-
enue, New York, New York 10010, 1992.

Rajit Manohar and Paolo A. G. Sivilotti. Composing processes using mod-
ified rely-guarantee specifications. Technical Report CS-TR-96-22, Com-
puter Science Department, California Institute of Technology, 256-80 Cal-
tech, Pasadena, California 91125, June 1996.

Bertrand Meyer. Eiffel: The Language. Object-Oriented Series. Prentice-
Hall, 1992. second revised printing.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Upper Saddle River, New Jersey 07458, second edition, 1997.

Jayadev Misra. A logic for concurrent programming: Progress. Journal of
Computer & Software Engineering, 3(2):273-300, 1995.

Object Management Group. The Common Object Request Broker: Archi-
tecture and Specification, February 1998. Revision 2.2.

Object-Oriented Concepts, Inc. ORBacus For C++ and Java. Version 3.1.

[18] J. E. Payne, M. A. Schatz, and M. N. Schmid. Implementing assertions for
java. Dr. Dobb’s Journal, January 1998.

[19] Sriram Sankar and Roger Hayes. ADL — an interface definition language
for specifying and testing software. ACM SIGPLAN Notices, 29(8):13-21,
August 1994.

[20] A. Udaya Shankar. An introduction to assertional reasoning for concurrent
systems. ACM Computing Surveys, 25(3):225-262, September 1993.

[21] Gowri Sandar Sivaprasad. Larch/CORBA: Specifying the behavior of
CORBA-IDL interfaces. Master’s thesis, Iowa State University, 226 Atana-
soff Hall, Ames, Iowa 50011-1040, November 1995. TR, #95-27.

[22] Paolo A. G. Sivilotti. A Method for the Specification, Composition, and
Testing of Distributed Object Systems. PhD thesis, California Institute of
Technology, 256-80 Caltech, Pasadena, California 91125, December 1997.
Available as CS-TR-97-31.

[23] Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California
94043-1100. Java Remote Method Invocation Specification, revision 1.5 edi-
tion, October 1998.

