
1

Computer Science and Engineering  College of Engineering  The Ohio State University

Interfaces First
(and Foremost) with Java

Paul Sivilotti
 The Ohio State University
 paolo@cse.ohio-state.edu

Matt Lang
 Moravian College
 lang@cs.moravian.edu

Computer Science and Engineering  The Ohio State University

A Philosophical Question

  What concepts are core to computing
science?

  What skills should our graduates have?
  What is computational thinking?
  What unifying theme, if any, links sub-

disciplines of computing science
together?

 What IS computing science?

Computer Science and Engineering  The Ohio State University

My Answer: Abstraction

  Examples are everywhere
  Networking

  OSI 7-layer model
  Architecture

  ISA, µarch, gates, transistors
  Algorithms

  Graphs vs Physical road networks
  Programming

  Procedural abstraction, Abstract data types
  Text encoding

  Glyphs, Unicode code points, UTF-8

  In CS, we develop our own
  In CS, we work with many simultaneously

Computer Science and Engineering  The Ohio State University

Where is the Mistake? (JDK 5b)
1: public static int binarySearch(int[] a, int key) {!
2: int low = 0;!
3: int high = a.length - 1;!
4:!
5: while (low <= high) {!
6: int mid = (low + high) / 2;!
7: int midVal = a[mid];!
8:!
9: if (midVal < key)!
10: low = mid + 1!
11: else if (midVal > key)!
12: high = mid - 1;!
13: else!
14: return mid; // key found!
15: }!
16: return -(low + 1); // key not found.!
17: }!

Computer Science and Engineering  The Ohio State University

Where’s the Mistake? (PDiJ)
1: public class IntSet {!
2: //IntSets are unbounded mutable sets of integers!
3: private ArrayList<Integer> els;!
4:!
5: public boolean isIn (int x) {!
6: //Returns true if x is in this, else false!
7: return getIndex(x) >= 0;!
8: }!
9:!
10: private int getIndex (int x) {!
11: //If x is in this, returns index of x,!
12: //else returns -1!
13: for (int i = 0; i < els.size(); i++)!
14: if els.get(i).equals(x) return i;!
15: return -1;!
16: }!
17: ...!

Computer Science and Engineering  The Ohio State University

Both are Mistakes of Abstraction

  Failure to distinguish between:
1.  math operator (+)
2.  programming language operator (+)
!{low = a ∧ high = b}!
!mid = low + high
{low = a ∧ high = b ∧ mid = low + high}!

  Failure to distinguish between:
1.  client-side abstraction (mathematical set)
2.  implementation representation (ArrayList)
!public boolean isIn (int x)  
 //this is a set with elements  
private int getIndex (int x)  
 //this is an ArrayList!

2

Computer Science and Engineering  The Ohio State University

An OO Course

  Variables, assignments, conditionals
  Iteration
  Objects: Classes vs instances
  State and behavior: Fields vs methods
  Encapsulation: Private vs public
  Inheritance

Computer Science and Engineering  The Ohio State University

Example: Natural Numbers

  Write a Java class that represents
unbounded natural (ie >= 0) numbers
  Like BigInteger, but for natural numbers

  Requirements:
  Two methods: increment and decrement
  Increment increases the value by 1
  Decrement decreases the value by 1,

unless it is already 0, in which case it
leaves the value unchanged

Computer Science and Engineering  The Ohio State University

A Solution
Computer Science and Engineering  The Ohio State University

Information Hiding vs Abstraction

  Information Hiding is:

class BigNatural {!
 //@alters this.n!
 //@ensures n = #n + 1!
 public void increment();!

 //@alters this.n!
 //@ensures if #n > 1, n = #n – 1!
 // else, n = 0!
 public void decrement();!
}!

Computer Science and Engineering  The Ohio State University

Information Hiding vs Abstraction

  Abstraction is:

//A BigNat is a non-negative unbounded!
//integer !
class BigNatural {!

 //this = #this + 1!
 public void increment();!

 //if #this > 1, this = #this – 1!
 // else, this = 0!
 public void decrement();!
}!

Computer Science and Engineering  The Ohio State University

Our Approach: Interfaces

  Require every component to have both
1.  An interface, and
2.  A class implementing that interface

  The interface is a client-side (abstract)
description of behavior
  State given as fields of mathematical

types
  Methods with specifications in terms of

abstract state

  Separate lexical scope enforces
distinction

3

Computer Science and Engineering  The Ohio State University

Information Hiding vs Abstraction

  Abstraction is:
//@mathmodel n is an unbounded integer!
//@constraint n >= 0!
//@initially constr() ensures n=0!
interface BigNatural {!
 //@alters this.n!
 //@ensures n = #n + 1!
 public void increment();!

 //@alters this.n!
 //@ensures if #n > 1, n = #n – 1!
 // else, n = 0!
 public void decrement();!
}!

Computer Science and Engineering  The Ohio State University

How do You Use Interfaces?

  Motivation: Java has single inheritance
  Interfaces allow multiple “is a”

relationships

  Motivation: Multiple implementations
  Interfaces provide flexibility to choose

different implementations

  Motivation: call-backs
  Swing needs them

Computer Science and Engineering  The Ohio State University

Outline of the Talk

  Motivation: Centrality of abstraction
  Abstraction ≠ private + getters/setters
  Take-home message:

  Leverage separation enforced by
interfaces

  Require students to use/write/document
both an interface and a class for each
component

  Benefits
  Limitations

Computer Science and Engineering  The Ohio State University

Benefit 1: Javadoc the Contract

  Best practice: Javadoc should describe
behavior but not implementation
details

  Tension: Javadoc for private methods?
  Javadoc is standard documentation tool
  Private fields and methods not part of the

contract

  Interface+Class discipline resolves this
tension
  Javadoc everything in interface for clients
  Javadoc everything in class for coders

Computer Science and Engineering  The Ohio State University

Benefit 2: Blackbox JUnit Testing

StudentTest

Student Graded
implements

extends

GradedTest protected Graded g;
@Before
public abstract void setUp();
@Test
public void someTest1() {...}
@Test
public void someTest2() {...}

@Override @Before
public void setUp() {
 g = new Student();
}

Computer Science and Engineering  The Ohio State University

Other Benefits

  Behavioral subtyping
  Class inheritance entails code sharing and

overriding
  Interface inheritance entails only behavioral

refinement (ie subtyping)

  Designing exceptions
  Exceptions must make sense in the interface

  Eg ArrayIndexOutOfBoundsException reveals too
much information about internal implementation

  Effective Java Item 52: Code to the
interface

4

Computer Science and Engineering  The Ohio State University

Limitations

  Interfaces do not have constructors
  Document initial state in javadoc of

interface
  Just a discipline, no static enforcement

  Real Java programs are not written
this way
  Not our learning objective

Computer Science and Engineering  The Ohio State University

Conclusion

  The distinction/separation between
1.  abstract, client-side view and
2.  concrete implementation

  Java provides a first-class language
construct for enforcing this separation:
interfaces

  Secondary point:
  Start with the client-side view

