
1

The Challenge: Context

• “Future Engineers Summer Camp”

– Summer day camp at OSU (1 week, free)

– 30 8th grade girls, mostly from Columbus
area

– Many science and engineering disciplines

• Our opportunity

– Design a “computer activity”

– Time budget: 3 hours

Our Goals
• Intellectual honesty

– Relate to intellectual core of computational science

• Exposure to deep ideas

– Introduce advanced, college-level, topics in CS

• Short-term engagement

– Keep students’ attention for the duration of module

• Long-term engagement

– Afford continued independent involvement
afterwards

Option 1: Kinesthetic Learning

• Kinesthetic learning activities
– Students are physically engaged

• People as processors
– network routing, flow-chart hopscotch

– Self-stabilizing distributed algorithm for mutual
exclusion (SIGCSE ’03)

• People as data structures
– human binary tree, sort the students

– Parallel garbage collection (SIGCSE ’07)

• Benefit: No hardware infrastructure needed
– What we’ve previously used

Option 2: Programming

• Introduction to programming

– Students learn a (simple) programming
language and environment

• Many Options

– Alice, Scratch, Karel, Logo, Phrogram, …

• Benefit: Foundations of computational
thinking

Option 3: Technology Use

• Computers are exciting, enabling tools

– Students use some computer-based
technology to learn and have fun

• Examples

– Web pages, Google Earth, Dance Dance
Revolution

• Benefit: Theme of “computer literacy”

– computers have a huge impact on our life

2

Comparing Goals

YesYesNoNoTechnology /
End-user

YesYesYesYesOur Module

No

Yes

if done right

Deep Ideas

YesYesYesIntro to
Programming

NoYesYes

if done right

Kinesthetic
Learning
Activities

Long-Term
Independent
Engagement

Short-Term
Engagement

Intellectual
Honesty

Our Ambition

YesYesNoNoTechnology /
End-user

YesYesYesYesOur Module

No

Yes

if done right

Deep Ideas

YesYesYesIntro to
Programming

NoYesYes

if done right

Kinesthetic
Learning
Activities

Long-Term
Independent
Engagement

Short-Term
Engagement

Intellectual
Honesty

Scratch
• Visual programming

environment
– Drag-and-drop control

blocks

• Emphasis on
multimedia
– Create sprites

• More information:
– http://scratch.mit.edu

– SIGCSE special
session and paper
later this afternoon

Scratch: Strengths

• Easy to learn

– Very little “lecture time” needed

• Fun

– Multimedia, (re)mixing

• Computational thinking 101

– Variables, conditionals, etc.

• Active online community

– Forums, galleries of projects (with code)

Deep Idea 1: Refinement

• Specifications are antimonotonic in their
preconditions
– Weaker precondition stronger spec

• Specifications are monotonic in their
postconditions
– Stronger postcondition stronger spec

),(),(ERERRR

),(),(EREREE

Deep Idea 2: Composition

• Large systems are assembled from
collections of (correct) components

BABABBAA ||||

3

Research Questions

1. Can a short module really achieve all
these goals?

2. Which goals are compromised, and to
what extent?

– Does addressing “deep ideas” decrease the
degree of short-term engagement?

– Assessment with control group

Module: Overall Structure

• Intro lecture:

– Role of CS in society

– Software engineering as “recipe engineering”

– Scratch intro (5 min!)

• Lab activity: “Save the Turtle”

– Specification Refinement

• Lab activity: “Butterflies and Dragons”

– Composition

Recipe Engineering

2 tbsp cocoa

1 tsp baking pwdr

3 eggs

1 ¼ c flour

¾ tsp salt

½ c butter

½ c sugar

1 lb chocolate

36 chocolate
chip cookies

Sequence of
instructions

I: “Save the Turtle”

Lab Activity

• Solve the same problem with
progressively harder restrictions

A) Fixed Start/Reach the Ocean

B) Random-facing Start/Reach the Ocean

C) Fixed Start/Reach the Ship

D) All-random Start/Reach the Ocean

What we observed

• A is simple

– Strong precondition, weak postcondition

• B is still pretty easy

– Moderate precondition, weak postcondition

• C is doable

– Strong precondition, strong postcondition

• Most teams got these three to work

4

Results

• D is a struggle

– Weak precondition

– Most teams could accomplish with some
hints

• A few even went on to get All-random
Start/Reach the Ship!

Student Lessons Learned

• Students agreed A is easiest, D is hardest

– Why is C harder than A?

• More constraint on programmer to reach the ship

– Why is B harder than A?

• Less information about where the turtle starts

Comparing Specifications

HarderEasier

random facing all randomfixed

reach
the ship

reach
the ocean

Easier

Harder

DBA

C

Bringing it all together
• Tie specification refinement back to

“recipe engineering”
– How difficult is it to make chocolate chip

cookies if you have ½ cup unsalted butter?
½ cup fat? Some fat?

– How easy is it to make 12 chocolate chip
cookies? Any 12 cookies? Something sweet?

• Easiest when we know a lot about the
input (and have few requirements on the
output)

II: “Dragons and Butterflies” Lab Set Up

• Two parts

– First write individual sprites

– Then mix sprites together and modify

• Use the “break” to merge/distribute
individual sprites

5

Lab Activity

• Part 1

– Each team gets assigned a sprite (fluttering
butterfly, fire breathing dragon, score
keeper, etc.)

– Given specific requirements

• A fluttering butterfly that flies around in a random
pattern

– Free to incorporate sound effects, colors,
and other elements

• as long as requirements are still satisfied

Lab Activity

• Break

– Collect the sprites into one directory

– Reexamine the “recipe engineering” analogy

• Final dish (output) can be consumed as an
ingredient (input) for another dish

Lab Activity

• Part 2

– Students mix and match sprites to compose
a game

– Assuming sprite requirements were followed,
“ingredients” fit together

– In remaining time, students customized
games

Student Lessons Learned

• Programs can be made from smaller
programs

– Side note: Specifications are important

Module Assessment

• Survey after activity

– Background, experience

– How much they learned about CS

– Short-term engagement

– (Expected) future engagement

• Compared with a control group

– Classic learn Scratch and program

– 14 students vs. 30 in workshop group

How much did you learn?

6

Short-term Engagement (Exp.) Long-term Engagement

Results Summary
• How much did you learn?

– Almost everyone felt they learned something about
CS

– A little higher for workshop group

• Short-term Engagement

– Fun is about the same in both groups

• (Exp.) Long-term Engagement

– Workshop group more likely to download Scratch

• Most students “changed their mind about
computing” (ALL of them for the positive)

Conclusions

• A 3 hour workshop can be intellectually
honest, introduce deep ideas, and be
engaging (short-term and long-term)

• Scratch is not designed to teach deep
ideas

– Very good for engagement

– Don’t change it!

• 3 hours (with breaks) is a little tight

Materials

• Lectures, handouts, and code
– http://www.cse.ohio-state.edu/~paolo/outreach/

7

Survey Data Summary of Survey Data

