
Scratching the Surface of Advanced Topics in Software
Engineering: A Workshop Module for Middle School

Students

Paolo A. G. Sivilotti and Stacey A. Laugel
Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{paolo,laugel}@cse.ohio-state.edu

ABSTRACT
A common approach for introducing computer science to
middle school students is to teach them a simple yet engag-
ing programming language. A different approach is to teach
them some advanced topic independent of any particular
language or syntax. We describe a 3-hour workshop module
designed to do both. This module has been piloted with a
group of thirty 8th grade girls. It uses the Scratch program-
ming language to develop the advanced software engineer-
ing concepts of specifications, refinement, and composition.
After this module, students were enthusiastic about contin-
uing to program in Scratch independently and also felt they
learned something about computer science as a discipline.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

General Terms
Design, Human Factors

Keywords
K-12 outreach, specifications, refinement, Scratch

1. INTRODUCTION
A variety of programming languages and environments

have been designed explicitly as first programming languages,
often targeting a K-12 audience. Examples include Logo,
Karel the robot, LEGO Mindstorms, Phrogram, Alice, and
Scratch. Although these environments differ in their par-
ticulars, they are similar in their focus on (i) student en-
gagement and (ii) core computational concepts such as se-
quencing, iteration, and conditionals. Thus, these languages
can be an effective introduction to the science of computing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’08,March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003 ...$5.00.

Furthermore, as students gain experience in programming,
they eventually encounter more advanced concepts in al-
gorithms, encapsulation, design, and abstraction. Indeed,
many of these languages have been used beyond K-12, for
introductory courses at the college level [6, 5].

A structured first exposure to computer science often oc-
curs as part of a school or camp curriculum. In such a set-
ting, there is time for students to learn a simple language,
explore and create programs using that language, and grad-
ually advance through more complex constructs and issues.

Not all structured first exposures, however, have the ben-
efit of an extended (or even repeated) interaction with stu-
dents. For example, every summer The Ohio State Uni-
versity hosts a week-long day camp for middle school girls
to introduce them to various science and engineering dis-
ciplines. One of the authors has organized the computer
science module as part of this camp since its inception in
2002. The primary challenges in organizing such a module
are the limitation in time (2 to 3 hours) and the lack of
programming experience amongst participants.

For an isolated workshop module such as this one, there
are few natural choices. One option is to introduce an el-
ementary programming environment. Students learn some
basic computational concepts, and—more importantly—can
become engaged enough that they continue programming in-
dependently after the workshop is over.

Another option is to expose students to some advanced
concepts in computer science. Students gain an appreciation
for the intellectual profile of the discipline which may res-
onate on a more fundamental level than any small-scale pro-
gramming activity. Examples of such an approach include
the Groupthink activity to teach specifications [2], kines-
thetic learning activities to teach distributed self-stabilization
[4], and “unplugged” activities to teach algorithms [3].

For a single short workshop module, these two options
may appear to be mutually exclusive. One either introduces
a programming language/environment, or an advanced con-
cept without any programming. However, in summer of
2007, we developed and conducted a workshop module for
middle school girls to acheive both goals. We were inspired
by personal anecdotal evidence that, for this audience, Scratch
is a highly engaging programming environment and requires
relatively little hands-on instruction. Furthermore, we were
confident that this audience could appreciate advanced con-
cepts in computer science given our earlier success with
teaching self-stabilization to middle school students [4].

This 3-hour workshop module assumes no previous pro-
gramming experience. The module includes both lectures
and hands-on programming activities. The activities are
designed to introduce students to several advanced concepts
in software engineering, specifically: pre- and post-condition
specifications, refinement of specifications, and composition.
The goal is for students to appreciate some of the intellec-
tual foundations of computer science, while at the same time
becoming engaged enough with Scratch to want to continue
programming on their own.

We evaluated the effectiveness of our workshop module
relative to a control group in which only Scratch program-
ming was introduced (i.e., without advanced concepts). Based
on retrospective self-evaluations, the advanced topics group
(i) felt they learned more than the control group, and (ii)
were more likely to download Scratch at home to continue
programming independently.

2. BACKGROUND

2.1 Scratch
Scratch is a visual programming environment in which

users create programs by dragging and dropping individual
action blocks that then snap together into scripts. The lan-
guage emphasizes visual effects and sound, allowing users to
easily create sprites, each of which is controlled by its own
set of scripts.

The design of Scratch deliberately favors novice program-
mers, emphasizing simplicity and ease-of-use over function-
ality and power. For example, although sprites bear some
resemblance to objects, there is no notion of classes or object
instantiation. To make multiple instances, a sprite must be
copied and pasted. Similarly, the language does not include
constructs corresponding to inheritance, generic types, or
interfaces.

The exclusion of advanced constructs directly contributes
to Scratch’s success at its chosen role: an engaging first
programming language that enables the expression of one’s
creativity through computation and multimedia. Because
of this simplicity, students can quickly understand enough
to write interesting programs. That is, Scratch affords the
opportunity for a positive programming experience practi-
cally “out of the box”. Furthermore, the absence of more
exotic (and powerful) features means that even a novice pro-
grammer can understand practically any Scratch program,
at least in terms of its constituent parts.

Of course, these same qualities that make Scratch so effec-
tive as a first programming language can also limit its utility
for teaching advanced concepts. Using Scratch in this role
(as is done in the module presented in this paper) should
be undertaken with considerable caution (and perhaps some
healthy apprehension).

2.2 Learning Objectives
The learning objective of this module is exposure to (not

proficiency in) the following advanced concepts in software
engineering:

Programs vs. Specifications. Both encode a mapping
from initial to final states. Programs give specific in-
structions for how to carry out this transformation
from input to output, while a specification describes
what the relationship is between the two.

Refinement: Strengthening the precondition and
weakening the postcondition. Hoare’s rule of con-
sequence states that specifications are antimonotonic
in their precondition and monotonic in their postcon-
dition. Put another way, the more information is given
about inputs (and the less information is given about
outputs), the easier it is to implement a specification.

Composition. The output from one program can be con-
sumed as input by another program. In this way,
smaller, simpler programs can be hierarchically com-
posed into more complex systems.

In addition to these advanced topics, it is also hoped that
students leave with the sense that programming is fun and
is something they can do on their own.

3. MODULE OVERVIEW
The module consists of an introductory lecture, followed

by two programming labs. The first lab develops the notion
of specifications and refinement, while the second deals with
composition. Pair programming is used for each lab.

The three hour time slot breaks down as follows:
20 min – Introductory lecture
45 min – Lab 1 activity
20 min – Lab 1 debrief and mini-break
20 min – Lab 2 activity part (a)
15 min – Break
10 min – Lab 2 discussion
45 min – Lab 2 activity part (b)
5 min – Module debrief

A unifying analogy is used throughout the module: pro-
grams as recipes. This analogy provides an informal, fa-
miliar context for presenting both the basic and advanced
concepts.

4. INTRODUCTORY LECTURE
Since no prior programming experience is expected for

this module, an introductory lecture is needed to give the
students some basis for carrying out the labs and for appre-
ciating the advanced topics underlying the activities.

This short lecture (15 minutes) develops the key analogy
used throughout the module: a computer as a chef, and a
program as a recipe. This is a common analogy in introduc-
tory courses, as exemplified by the classic PB&J sandwich
activity [1]. In our case, though, the point of this analogy
is not how things can go wrong if there are ambiguities in
the program.1 Instead, the point made is that a chef is a
general-purpose processor, capable of transforming ingredi-
ents (input) into a final dish (output), while the recipe is
the sequence of instructions for how to carry out this trans-
formation. Software engineering, then, is cast as “recipe
engineering”.

After defining programs by analogy, we then discuss re-
quirements and their role in the broader context of engineer-
ing. Example requirements are given from civil engineering
1In our experience, such a lesson is entirely counterproduc-
tive and misplaced as an early introduction to computer sci-
ence. Rather than focusing on disastrous—though perhaps
humorous— outcomes resulting from incorrect programs, it
seems more appropriate to engage students with the ex-
citing, creative possibilities enabled by writing correct pro-
grams.

Figure 1: Stage for “Save the Turtle” Lab

where a bridge is required to span a certain distance and
carry a certain load. A clear distinction is made between
requirements and designs. The former is provided by the
client, the latter by the engineer. The former defines what
it means for the latter to be correct. Engineering is cast as
a problem-solving discipline in which a design must be de-
veloped that is both “correct” (meets its requirements) and
“good” (based on metrics such as cost, weight, etc).

To bring the discussion back to software engineering, the
question is posed: “What kinds of requirements would be
given to a recipe engineer?” Students quickly see that the
final dish is an important part of the specification. To elicit
a more complete view, the point can be made that there is
a trivial recipe for solving the problem if only the final dish
is listed: Use a single ingredient, the final dish itself. The
conclusion, then, is that recipes (programs) are specified by
both their ingredients (inputs) and final dish (output).

At the end of this lecture, a very brief introduction is
given to Scratch. No more than 5 minutes are needed to
demonstrate the user interface, some basic types of blocks,
the stacking of blocks, and the creation of sprites.

5. LAB 1: PROGRAMS, SPECIFICATIONS,
AND REFINEMENT

In the first lab, students are asked to solve a series of
progressively harder programming tasks. They are given
a Scratch program consisting of a turtle sprite and several
obstacle sprites on a beach. For each task, students write
a script to navigate the turtle safely (i.e., without hitting
obstacles) across the beach (see Figure 1).

The tasks differ in the conditions under which this navi-
gation must be accomplished:

(A) Fixed start / Reach the ocean. The turtle always be-
gins in the same position in the upper left-hand corner
and facing the same direction; it must reach the ocean
along the right-hand side of the stage.

(B) Random-facing start / Reach the ocean. The turtle
always begins in the same position as in (A), but facing
any random direction; it must reach the ocean as in
(A).

(C) Fixed start / Reach the ship. The turtle begins as in
(A) but must reach the ship floating on the ocean.

(D) All-random start / Reach the ocean. The turtle can
begin in any position and facing any direction; it must
reach the ocean.

In order to rule out trivial solutions, students are prohib-
ited from modifying the scripts of any sprites other than the
turtle. In order to guarantee that collisions with obstacles
are detected, students are also prohibited from using “goto
x/y” and “set x/y” blocks and from moving more than 10
steps with a single block.

Most teams completed the first three tasks fairly easily,
since these can be accomplished with straight-line scripts.
Task (D), however, requires a conditional and sensing the
proximity of an obstacle. Some teams discovered Scratch’s
conditional control blocks on their own while the rest were
given a hint after struggling for a while.

A small element of competition was added to this lab by
including a score that decreased with time and the num-
ber of obstacles encountered along the journey. Teams that
finished early were encouraged to optimize their score.

In the debriefing following this lab, students had no dif-
ficulty in agreeing that (A) was the easiest task and (D)
was the most difficult. When asked specifically why (C),
reaching the ship, was more difficult than (A), students im-
mediately saw that the extra constraint on the result meant
more work for the programmer. The students also recog-
nized that the random facing start in (B) was more difficult
than (A) because less information was given about the in-
put. The recipe analogy was used as a further illustration
of this principle. Students considered the relative difficulty
in writing a recipe for chocolate chip cookies, for any kind
of cookie, for anything sweet, or for anything edible. Again,
the more constrained the final dish (output), the harder the
recipe (program) is to write.

Finally, the corresponding observation was made for pre-
conditions. Saving the turtle by reaching the ocean is easier
when both initial position and direction are known, slightly
harder when only initial position is known, and harder still
when neither is known. In terms of recipes, students consid-
ered the relative difficulty in writing a recipe for chocolate
chip cookies given 1/2 cup of unsalted butter, given 1/2 cup
of some kind of fat, or given some amount of some kind of
fat. The more is known about the ingredients (input), the
easier the recipe is to write.

6. LAB 2: COMPOSITION
The second lab is subdivided into two parts. In the first

part, each team is asked to create a sprite that meets a
specific set of requirements. In the second part, teams im-
port the sprites written by other teams to form a complete
Scratch project. The theme for this lab is “dragons and but-
terflies” since the assembly of the sprites written by different
teams results in an interactive game in which fire-breathing
dragons chase fluttering butterflies and try to scorch them.

In the first part of the lab, teams are given a precise de-
scription of the required behavior for one of the following
sprites:

• A flying dragon that moves around in response to the
arrow keys being pressed.

• A fire-breathing dragon that breathes fire when the
space bar is pressed.

• A fluttering butterfly that flies around in a random
pattern.

• A scorched butterfly that appears to burn when it
touches a particular shade of red.

• Timer and score-keeper sprites that announce the end
of the game when too much time has expired (a loss)
or enough butterflies have been scorched (a win).

Teams are free to incorporate any sounds, visual effects,
animations, or behaviors they wish, so long as the final prod-
uct adheres to the properties given in their sprite descrip-
tion.

A break is scheduled at this point for the benefit of both
the students and the organizers. While the students get
up and relax, the module leaders can collect the individual
sprites and organize them into a central directory structure,
with one subdirectory per sprite type. With 5 different sprite
types, it is helpful to have at least 10 teams, that way there
are multiple solutions for each assigned type. In our case, we
had a group of 30 girls and used pair programming, meaning
there were three different solutions generated for each type.
In addition, we added our own solution for each type within
the appropriate subdirectory, for a total of four.

After the break, a short (10 minute) lecture presents the
concept of composition. The recipe analogy is again useful
in illustrating how the final dish (output) of one recipe can
be consumed as an ingredient (input) of another recipe. In
this way, several small recipes can be assembled to produce
a fairly complicated and impressive final dish.

In the second part of this lab, students are asked to mix-
and-match solutions for each type of sprite and assemble
them into a new Scratch project. By stitching together some
of the behavior (e.g., the control of dragon movement and
breathing fire), and assuming that each sprite was correctly
implemented individually, the result is an interactive game.
Teams are then given free reign in the remaining time to
extend, modify, improve, or personalize their projects in any
way. A screen shot of one assembly of these sprites is show
in Figure 2.

In order for the assembly of individual sprites to go smoothly,
it is important to carefully and precisely define the points
at which they interact. For example, a specific shade of red
is part of the flame image when a dragon breathes fire. The
scorched butterfly is required to burn when it touches this
exact same shade of red. Similarly, the exact name is given
for the message broadcast when a butterfly is scorched. This
same message name is received by the score-keeping sprite.

The final code produced by each group in our recent of-
fering of this module is available at
http://www.cse.ohio-state.edu/~paolo/outreach/FESC07.

The module ends with a recapitulation of the key learning
outcomes and an opportunity for group discussion.

7. EVALUATION
In July, 2007, we conducted this module with a group of

thirty 8th grade girls who were attending a week-long sum-
mer camp focusing on science and engineering. After com-
pleting the module, participants anonymously completed in-
dividual surveys reporting their impressions of the module

Figure 2: Sample “Dragons and Butterflies” Project

and of computer science in general. As a control, a week
later we conducted a similar workshop module with a differ-
ent set of 14 middle school girls. For the control group we
presented only the Scratch programming environment, with-
out broaching more advanced topics in software engineering.
The control group then completed the same survey.

The survey asked students to report their prior program-
ming experience, whether they have a computer at home,
how much fun they had during the module, how much they
felt they learned, how likely they were to download and use
Scratch at home, and how their impression of computer sci-
ence as a discipline changed as a result of the module if at
all. The results are summarized in Table 1.

In terms of background, almost all students reported hav-
ing a computer at home with an internet connection (27/28
in the test group and 13/14 in the control). On the other
hand, few students had any prior programming experience
(9/28 in the test group and 1/14 in the control). Of the 10
students with prior experience, two had used Scratch while
the rest had used Lego Mindstorms or Logo.

In response to the module itself, students evaluated how
much they felt they had learned and how much fun they had.
Response was on a 4-point scale, with 4 being the most and
1 being the least. Both groups had similar scores in both
categories, although the test group reported learning slightly
more (mean 3.0 and σ = 0.7 vs. mean 2.7 and σ = 0.8). The
test group also reported having slightly less fun (mean 3.2
and σ = 0.8 vs. mean 3.4 and σ = 0.8).

Beyond determining whether the module was fun for stu-
dents, we were particularly curious about the likelihood of
continued engagement with Scratch programming after the
workshop. Students who had a computer at home were
asked how likely they were to download and install Scratch
within the next week. Response was on a 4-point scale,
with 4 being the most likely to do so and 1 being the least.
Interestingly, the test group reported a markedly higher like-
lihood of downloading Scratch (mean 2.9 σ = 0.9 vs mean
2.2 σ = 0.7 for the control).

Perhaps the most impressive result was the impact the use
of Scratch had on students’ perception of computer science
as a discipline or as a career option. Many students reported
changing their opinion (either “a lot” or “a little”) as a result

Table 1: Summary of Survey Data
Response Workshop Control

n=29 n=14
1. Before this lab, had you ever written a computer program? Yes 9 1

No 19 13
2. Do you have a computer and Internet connection at home? Yes 27 13

No 1 1
3. How likely are you to download Scratch at home Certain 9 0

in the next week? Very likely 10 4
Somewhat likely 7 7
Unlikely 3 3

4. How much fun did you have in this activity? A ton 13 8
A lot 9 4
Some 7 2
None 0 0

5. How much do you feel you learned in this activity? A ton 7 2
A lot 15 7
Some 6 4
None 1 1

6. Did this lab change your opinion of computer science Yes, a lot 3 4
(as a discipline or a career option) in any way? Yes, a little 21 9

No, not at all 5 1
7. If you answered “yes” above, how did your opinion change? More favorably 24 12

Do you now view computer science more or less favorably? Less favorably 0 1

of the activity: 24/28 in the test group and 13/14 in the con-
trol group. Furthermore, of those whose opinion changed,
practically all reported viewing computer science more fa-
vorably afterward (24/24 in the test group and 12/13 in the
control group). These numbers are a testament not to the
success of this module, but to the effectiveness of Scratch in
engaging an audience of (female) middle school students.

Some differences do exist between our test group and the
control group. Firstly, the test group was significantly larger
(30 vs 14). Secondly, the test group had a narrower range
of ages: All students were entering the 8th grade as com-
pared to the control group where students were entering the
7th, 8th, or 9th grade. Finally, the two groups were taken
from different summer day camps, with different adminis-
trators and hence different dynamics amongst participants.
It should be noted, though, that both camps are similar in
philosophy and mission. Both are zero-cost to participants,
reducing the economic burden involved in enrollment. Both
target underrepresented minorities and aim to select stu-
dents with an aptitude in math and science, but not neces-
sarily a long-term career ambition in engineering. Both are
structured as week-long surveys of a variety of science and
engineering disciplines. Thus, in our view, the control group
serves as a reasonable basis for comparison.

8. CONCLUSIONS
Introducing computer science to middle school students

by focusing on a programming language has the advantage
of enabling continued engagement. That is, interested stu-
dents can continue to program on their own, thus gaining
experience in computational thinking. A different strategy
for introducing computer science is to focus on an advanced
topic. The advantage of this approach is that students can
glimpse some intellectual underpinnings of the discipline.

We developed a 3-hour module to acheive both goals.
The module includes lectures and hands-on programming

labs using Scratch. It introduces several advanced concepts
in software engineering, in particular: specifications, refine-
ment, and composition. This module has been successfully
piloted and found to engage students both in programming
and in the advanced topics.

All module resources (lecture power points, student in-
struction sheets for labs, and Scratch code) are available at
http://www.cse.ohio-state.edu/~paolo/outreach.

9. REFERENCES
[1] J. Davis and S. A. Rebelsky. Food-first computer

science: starting the first course right with PB&J. In
SIGCSE ’07: Proceedings of the 38th SIGCSE technical
symposium on Computer science education, pages
372–376, New York, NY, USA, 2007. ACM Press.

[2] M. D. Ernst and J. Chapin. The groupthink
specification exercise. In ICSE ’05: Proceedings of the
27th international conference on Software engineering,
pages 617–618, New York, NY, USA, 2005. ACM Press.

[3] M. Fellows, T. Bell, and I. Witten. Computer science
unplugged. http://csunplugged.org, 2002.

[4] Paolo A. G. Sivilotti and Murat Demirbas. Introducing
middle school girls to fault tolerant computing. In
SIGCSE ’03: Proceedings of the 34th SIGCSE technical
symposium on Computer science education, pages
327–331, New York, NY, USA, 2003. ACM Press.

[5] D. J. Malan and H. H. Leitner. Scratch for budding
computer scientists. In SIGCSE ’07: Proceedings of the
38th SIGCSE technical symposium on Computer
science education, pages 223–227, New York, NY, USA,
2007. ACM Press.

[6] B. Moskal, D. Lurie, and S. Cooper. Evaluating the
effectiveness of a new instructional approach. In
SIGCSE ’04: Proceedings of the 35th SIGCSE technical
symposium on Computer science education, pages
75–79, New York, NY, USA, 2004. ACM Press.

