
The Suitability of Kinesthetic Learning Activities for
Teaching Distributed Algorithms

Paolo A. G. Sivilotti
Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

paolo@cse.ohio-state.edu

Scott M. Pike
Computer Science

Texas A&M University
College Station, TX 77843-3112

pike@cs.tamu.edu

ABSTRACT
Kinesthetic learning is a process in which students learn by
actively carrying out physical activities rather than by pas-
sively listening to lectures. Pedagogical research indicates
that kinesthetic learning is a fundamental, powerful, and
ubiquitous learning style. To date, efforts to incorporate this
learning style within the computer science curriculum have
focussed on introductory courses. Material in upper-level
courses, however, can also benefit from a similar approach.
In particular, courses on distributed computing, by the very
nature of the material they cover, are uniquely suited to
exploiting this learning technique. We have developed and
piloted a collection of kinesthetic activities for a senior un-
dergraduate or graduate-level course on distributed systems.
We give detailed descriptions of these exercises and discuss
factors that contribute to their success.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

General Terms
Design, algorithms

Keywords
Pedagogy, active learning, concurrency, reasoning

1. INTRODUCTION
A kinesthetic learning activity (KLA) is a pedagogical tool

involving physical movement by students. As part of such
an activity, students might stand, walk, talk, point, or even
work with props. The key characteristics of a KLA are that
(i) students are actively, physically engaged in the exposi-
tion and assimilation of classroom material, and (ii) this
engagement directly supports a specific learning objective.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’07, March 7–10, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003 ...$5.00.

Most college courses rely on the traditional lecture-based
format for instruction. Even when supplemented with visual
slides, this format is primarily a passive form of education.
As such, this format often suffers from decreased student
engagement, frequent student inattention, and the exclusion
of nonverbal learning modalities [4].

KLAs serve to offset these shortcomings. They can be
used in the middle of a long lecture to re-energize the class
by creating a new perspective from which to consider the
topic. Beyond the short-term effect, including KLAs on a
regular basis can have a fundamental impact on the class-
room culture of interaction. As a side effect of these ac-
tivities, students learn each other’s names and become more
comfortable asking questions and participating in group dis-
cussions. This raises the level of engagement during the
periods of traditional lecturing. Finally, while traditional
lectures appeal primarily to a single learning style, research
in pedagogy indicates that multiple modalities are more ef-
fective [10], so incorporating KLAs broadens the scope of
students who achieve positive learning outcomes.

Recently, kinesthetic learning has enjoyed increased promi-
nence within the computer science education community [5,
2], including an annual workshop at SIGCSE. Many KLAs
for computer science topics have been developed, most of
which target the introductory and lower-level courses. Two
templates have emerged as common themes in the design
of KLAs for computer science topics: algorithms enacted
by people and data structures built from people. Both of
these templates naturally promote an awareness of concur-
rency (since participants can be simultaneously active) and
locality (since cognitive and physical constraints limit how
much a single participant can do). For this reason, KLAs
(though relevant for all topics in the CS curriculum) are par-
ticularly well-suited to a course on distributed computing,
where concurrency and locality are ubiquitous and funda-
mental themes.

In this paper, we present a collection of KLAs we have de-
signed and piloted for a senior undergraduate or graduate-
level course on distributed systems. Based on our experi-
ences, we give detailed directions for conducting each ac-
tivity including materials and logistics. We describe the
learning objectives each activity is meant to support, and
delineate the most important elements contributing to its
success. We also give some general advice about how to de-
sign new KLAs. Our hope is that others will adopt these
particular activities in their own distributed systems courses
as well as use the examples in this collection as a pattern
for developing new activities.

2. BACKGROUND

2.1 Personality Types and Learning Styles
The modern approach to psychological typology traces its

origins to the work of C. G. Jung, who introduced a classic
taxonomy of personality [9]. This work is the foundation for
the Myers-Briggs Type Indicator, which divides personality
types along four dimensions: introvert-extrovert, sensing-
intuitive, thinking-feeling, and perceiving-judging [11]. This
popular instrument is used in many settings including career
counseling, team formation, and conflict resolution.

Personality type theory has also been applied in the ed-
ucational setting, where evidence suggests the existence of
a variety of learning styles (and complementary teaching
styles) [1, 3]. No single learning style fits everyone. While
some students assimilate visual information best, others pre-
fer auditory information. While some students prefer infor-
mation to be structured as facts about things, others prefer a
structure based on relationships among things. While some
students prefer starting with first principles and using de-
ductive reasoning, others prefer starting with examples and
using inductive or abductive approaches.

In order to accommodate this variety of learning styles,
educators should strive for a balance of teaching styles. In-
corporating kinesthetic teaching in the classroom is a step
toward achieving this balance.

2.2 The Perils of Anthropomorphism
Dijkstra famously warned of the dangers of anthropomor-

phism in science in general and in computer science in par-
ticular [7].

One concern is that anthropomorphisms may encourage
students to view algorithms operationally, rather than asser-
tionally. Students should be encouraged to understand con-
current algorithms in terms of invariants, metrics, progress
properties, etc., rather than in terms of sequences of ac-
tions and interleavings of events. A second concern is that
anthropomorphic metaphors can be so compelling that stu-
dents may make incorrect inferences based on the metaphor.

Computer science KLAs frequently put students in the
roles of processors or data. Therefore, concerns about an-
thropomorphisms can easily be exacerbated through the care-
less use of such activities. However, kinesthetic learning
does not, in itself, inherently carry these shortcomings. If
properly designed and judiciously applied, KLAs can sup-
port assertional, not operational, reasoning. The powerful
metaphors they promote can serve as mnemonic hooks for
the most important concepts. The designer of a KLA is re-
sponsible for ensuring that it is a constructive aid supporting
a desired learning objective rather than a harmful distrac-
tion. The activities described in this paper are exemplars of
this approach.

3. SAMPLE KINESTHETIC ACTIVITIES

3.1 Nondeterministic Sorting
The Algorithm. For a given array of integers, the fol-

lowing action is repeated: A pair of elements is chosen,
compared, and swapped if they are not in order [6]. The
sequence in which pairs are chosen is not specified by the al-
gorithm, but weak fairness requires that every pair be chosen
infinitely often.

Description of the activity. A group of students is
chosen to represent the data array. Each student represents
a single element in the array and is given a sign indicating
their position in the array. The sign should be easily visi-
ble, so a sheet of paper with an attached loop of string and
worn around the neck works well. In addition, each student
is given a small index card on which they write a random
number. While the sign with the position should be easily
visible to everyone, the value on the index card should be
private. A student keeps the same array position (sign) for
the entire activity but will swap data values (index cards).

During the activity, students mill around and arbitrarily
select other students with which to compare data values. If
the values on their respective index cards are out of order
with respect to the students’ positions in the array, the in-
dex cards are exchanged. At the beginning of the activity,
students are instructed to raise their hands when they be-
lieve the array is sorted. When all hands have been raised,
the students line up in order of array position and then read
out the data values on their index cards to confirm that the
array has been sorted.

An optional element of the activity is to use the rest of the
class as “comparison processors”. In this variant, students
representing array elements are not allowed to see other stu-
dents’ index cards, even during a comparison. Instead, the
pair of students go to a comparison processor and hand over
their respective index cards. Only in the case of a swap
do they discover the data value held by the other proces-
sor. This variant can lead into an interesting discussion of
termination detection, but generally takes much longer to
complete (even with many comparison processors).

Learning Objective 1. A deterministic, sequential al-
gorithm is often an over specification.

Students can easily see that there are many possible exe-
cution sequences for this nondeterministic sorting algorithm.
Some of these sequences correspond to well-known sequen-
tial algorithms, such as bubblesort or mergesort. In fact,
every deterministic, in-place, comparison-based sorting al-
gorithm corresponds to some execution sequence for the non-
deterministic sorting program. Indeed, some students will
naturally attempt a bubble-like execution, comparing their
own data value with each array position in turn.

Of course, the important claim is the converse: Every
execution sequence of the nondeterministic algorithm yields
a sorted array. Students can be guided through the careful
assertional proof of this claim based on the proper invariant
(that the array is a permutation of the original) and metric.

Learning Objective 2. A good metric is not always
obvious.

Participants have an intuitive sense of convergence to-
wards the correct data value, but often have a difficult time
making that intuition precise. Some metrics students have
proposed include: (i) the number of elements in their correct
(final) position, (ii) the sum of distances that data values are
from their correct (final) position, and (iii) the length of the
longest sorted prefix. The first two are simply not true, and
the last is too coarse-grained to be useful (i.e., lots of good
work can happen without affecting the length of the longest
sorted prefix).

One observation that participants can easily make is that
it becomes increasingly unlikely that they will swap index
cards as the algorithm proceeds. Initially, about half of the
comparisons result in swaps, but that fraction gradually de-

creases to zero. This observation leads directly to the for-
mation of a correct metric: the number of out-of-order pairs.
This number is monotonically non-increasing, bounded be-
low, and decreased by every swap.

Learning Objective 3. An action system has termi-
nated when it reaches a fixed point.

The execution of an action system consists of an infinite
sequence of (nondeterministicly chosen) actions. The pro-
gram is defined to have terminated when it reaches a fixed
point: In the case of this sorting algorithm, no further swaps
of data values can occur. It is generally not, however, im-
mediately obvious to any one participant that this condition
holds! This difficulty of locally recognizing the fixed point is
reflected in the fact that participants hesitate in raising their
hands to indicate they believe the algorithm has terminated.

To test for termination, participants tend to methodically
compare with each element in the array, keeping track of
each value. After the activity, they can be asked to precisely
characterize the condition under which they can raise their
hands. This question is even more interesting under the
variant where a comparison processor is used, so participants
do not see the other data value when no swap occurs. Again,
the process of formalizing their intuition into a more rigorous
statement is a useful one. For example, students can be
asked to prove or disprove the following (erroneous) claim:
A participant has their final value if they have compared
with all other participants and found they did not need to
swap. Post-activity questions of this kind can be used to
highlight the nature of rigorous assertional reasoning.

Tips for success. Participants should not be able to
easily guide the algorithm to completion by intelligently se-
lecting comparisons. To this end, data values should be kept
small (e.g., placed on index cards as described above) and
private. If participants can see data values from a distance,
they will tend to perform many implicit comparisons as they
mill around looking for someone with whom to swap values.
This mode of making many implicit comparisons creates the
false impression that relatively few comparisons are needed
to complete execution of the algorithm and that almost all
comparisons are effective comparisons, i.e., resulting in a
swap of data values. Uniqueness of data values is not nec-
essary. In fact, the presence of duplicate values will reduce
the time needed for the algorithm to complete.

It may be tempting to increase participation by running
the activity with a larg array size. However, when the array
is too large, the activity takes too long to complete. Con-
versely, if the array is too small, the amount of interesting
work to be done in sorting is too small. In our experience,
an array size around 10 (and no more than 15) works best.

3.2 Parallel Garbage Collection
The Algorithm. For a directed graph with a single dis-

tinguished vertex, called the root, vertices reachable from the
root are termed food. All other vertices are termed garbage.
The task is to distinguish food and garbage so that the lat-
ter can be collected. The challenge lies in accomplishing this
task concurrently with a mutator process that is allowed to
modify the edges (but not the set of vertices). The mutator
process is allowed to (i) delete any edge and (ii) add any
edge so long as the new edge is directed toward a vertex
that is already food.

The trivial algorithm of marking all vertices is not correct
because it marks vertices that are initially garbage. The

obvious algorithm of marking the root and then propagate
marks to any neighbor of a marked node is also not correct,
because the mutation of the graph could undermine the dif-
fusion of the marks. Some food may never get marked. The
correct algorithm extends the mark propagating approach
by also marking a node when an edge is created that is di-
rected towards it [6].

Description of the activity. A group of 15 to 20 stu-
dents is chosen to represent the vertices in the graph. Each
student is given a hat and a stack of approximately 12 index
cards. One student is distinguished as the root. Each stu-
dent then writes their own name, once on each index card
in their stack. Three index cards are collected from each
student, shuffled, then redistributed to the group. The re-
distributed cards received by a student are edge cards and
should be held in one’s hand while the cards that were never
collected are reserves and can be kept in one’s pocket. An
edge card represents an edge directed from the student hold-
ing the card to the student whose name is on the card.

Graph mutation is accomplished by the students them-
selves. Edges are always added and deleted by the source
vertex. A student can delete an edge, at any time, by sim-
ply discarding an edge card from their own hand. (These
discards should also be brought back periodically to the stu-
dents whose names appear on the cards, just to replenish
students’ reserves.) To add an edge, a student must first
choose a destination vertex that is reachable from the root.
This is done by examing the edge cards of the root and
choosing one vertex, then examing the edge cards held by
that vertex and again choosing one vertex, and so on, stop-
ping after as many hops as the student wishes. The student
then takes a card from the destination vertex’s reserves, thus
creating the edge.

In addition to the students representing the graph and
carrying out the mutation, one more volunteer is chosen to
be the marker. This student attempts to mark all food ver-
tices (by placing their hat on their head) while not marking
any vertices that were garbage at the beginning of execu-
tion. The naive mark-and-sweep algorithm should be sim-
ulated where the marker begins by marking the root, and
then recursively marks each vertex in the root’s edge cards.

When the marker decides they have completed their task,
their work can be checked. One way to do this is to have all
students sit down, then perform a depth-first search of the
graph beginning with the root and asking each student, as
their name is read, to stand up (and read the name on one of
their edge cards). At the end, all food vertices are standing
and it can be seen whether they have all been marked.

Learning Objective. Operational reasoning is danger-
ous.

This activity is most effective when used to illustrate an
incorrect algorithm. The naive algorithm consists of mark-
ing the root, then repeatedly examining some marked vertex
and marking its neighbors. This algorithm, however, is not
guaranteed to mark all food. The run that exposes this error
in the algorithm is somewhat pathological and unlikely to
arise by random chance. To illustrate the error, then, some
collusion among the student volunteers is necessary.

The simplest way to frustrate the marking of all food is
to arrange ahead of time with two students to be special
vertices, each of which has an edge to the instructor. It
is important that (i) no other vertices have edges to the in-
structor and (ii) both special vertices remain reachable from

the root continually through the activity. The first property
is ensured by only giving out two edge cards from the in-
structor, one to each special vertex. The second property is
ensured by making both special vertices immediate neigh-
bors of the root and instructing the root to never discard
either of their edge cards.

During the activity, each special vertex keeps the instruc-
tor edge card in their hands, unless they are about to be
checked by the marking process. Before being checked, they
casually discard the instructor edge. After being checked,
they can safely pick that card back up. Thus, the only time
they are not holding the instructor edge card is when they
are being checked by the marker process.

At the end of the activity, the entire class should be sur-
prised that the naive algorithm failed to mark all food. The
operational argument, that marks spread throughout the
root’s connected component, is compelling. This activity is
useful, therefore, in illustrating the dangers in anthropomor-
phic, informal, handwaving arguments.

Tips for success. The activity depends on students
knowing each other’s names, since names on index cards en-
code edges. Students should be encouraged to mill around
and actively add and discard edges.

The class should not be aware of the collusion between the
two students described above, so it should be arranged be-
forehand. During the activity, asking the root not to discard
any edge cards generally does not raise suspicions. To fur-
ther obfuscate the collusion, the two volunteers should not
be physically near each other. The goal is for none of the
participants to be aware of the special interleaving of con-
current actions being orchestrated to frustrate the marking
of a particular food vertex (the instructor).

In addition to identifying all vertices that are food at the
end of the activity, a correct marking algorithm is also re-
quired to not mark vertices that are initially garbage. A ran-
dom 3-regular directed graph with 15 vertices, as described
in this activity, has an astronomically small probability of
containing garbage initially. Therefore, the graph must ei-
ther be deliberately constructed to contain garbage initially,
or a smaller degree must be used1. One way to deliberately
construct the graph with garbage is to partition the students
representing vertices into 2 groups and then distribute edge
cards (i) within each group, and (ii) from the group contain-
ing the root to the other group (thus forming edges pointing
towards the group with the root). At the end of the activ-
ity, students representing vertices that were initially garbage
can be asked to stand to verify that none have been marked.

3.3 Stabilizing Leader Election
One challenge of kinesthetic learning activities is the pos-

sibility that things can go amiss during the activity itself.
For example, algorithmic simulations can witness communi-
cation faults whenever students misunderstand each other’s
speech or handwriting. Sometimes a single mistake can pre-
cipitate a global algorithmic failure. In the examples we
have tested, this can usually be avoided by careful design
and management of the activity itself. This next activity,
however, actually leverages the possibility of faulty execu-
tions into a learning opportunity for illustrating the self-
healing properties of stabilizing systems. Specifically, this

1A 2-regular graph with 15 vertices still only has about a
10% chance of containing garbage initially, while a 1-regular
graph is virtually guaranteed to contain garbage initially.

activity shows how the impact of data corruptions can be
temporally isolated and repaired during the execution of a
stabilizing leader-election algorithm.

The Problem. Each process in a connected graph has
a distinct numeric identifier. The goal is to elect as leader
the unique process in the system with the greatest identi-
fier. The fault model assumes that process identifiers are
not corruptible, but that transient faults may corrupt the
data values of all other variables finitely many times during
any run. Such faults can be repaired only by overwriting
the corrupted values with fresh values.

Description of the activity. This activity simulates
two leader election algorithms drawn from [8, pp. 34–36].
The first algorithm is intolerant: It may yield invalid elec-
tion outcomes in the wake of certain data corruptions. The
second is stabilizing: It always detects and recovers from
finitely many transient corruptions to non-identifier vari-
ables. In both activities, each student represents a process
in the graph. Each pair of students with adjacent seats in
the classroom shares an undirected edge in the graph.

In principle, each student needs a distinct process iden-
tifier; in practice, only the maximal identifier needs to be
unique. The identifiers can be assigned by the instructor for
finer control of the activity, but this is usually unnecessary.
A simpler approach is for each student to use the last four
digits of their telephone number.2

The Intolerant Algorithm. Each student maintains on
a flash card a local variable called candidate, which records
the maximum identifier witnessed thus far. Upon start-up,
each student initializes their candidate variable to the value
of their own process identifier. Thereafter, the algorithm
proceeds via concurrent gossiping as follows: (1) Every stu-
dent periodically shares the current value of their candidate
variable with each neighbor; (2) After each exchange of in-
formation, the value of each local candidate variable gets
updated to equal the max of the two values just witnessed.

Learning Objective 1. Single, local faults can precipi-
tate global algorithmic failures.

Not all faults lead to an erroneous result: the spurious
candidate value must be globally maximum. One colluding
participant can surreptitiously corrupt their candidate value
(but not their actual process identifier) to 9999 — a value
that is globally maximal and is very unlikely to denote any
legitimate process identifier in the system. The corrupted
value will diffuse throughout the graph until it ultimately
gets elected leader. At this point, the instructor can ask for
the person with the elected identifier 9999 to stand up. The
absence of such a person witnesses the failure of the algo-
rithm, and provides a basis for classroom discussion about
how the intolerant algorithm can be amended.

The Stabilizing Algorithm. This solution recovers
from transient data corruptions by recomputing floating out-
puts — a technique that filters out spurious candidates to
prevent phantom leaders from being elected. The key idea is
that each legitimate candidate must correspond to some ac-
tual, reachable process in the system. For any system with
at most k +1 processes, the minimal path from any node to
a legitimate candidate can never exceed k hops. Each node
continually recomputes the shortest distance to the maximal
candidate value seen thus far, except that candidates more
than k hops away are excluded as spurious.

2Duplicate maximal values are improbable using this assign-
ment strategy, but beware of roommates!

Each student maintains two corruptible variables: can-
didate and distance. Each student continuously monitors
their neighbor’s candidate and distance variables and up-
dates their own values to maintain the following property:
Their own candidate value is equal to the maximum of all
neighbors’ candidates and their own identifier. In addition,
their own distance value is one greater than the minimum
distance value of a neighbor with the maximum candidate
value (or 0 if the maximum candidate value is their own
identifier). It is important that only neighbors with a dis-
tance value less than k are considered during this operation.

While in the intolerant algorithm, students use their own
candidate values for comparison, it is important that in the
stabilizing algorithm one’s own candidate and distance val-
ues are not used in updating this information.

Learning Objective 2. Transient faults can be repaired
via computational redundancy.

In the algorithm, any maximal identifier that is spurious
will also have a spurious distance. As such, each round of
execution will cause the estimated distance to this node to
increase. Eventually the estimated distance will exceed a
known bound k on the number of nodes in the graph, at
which point the spurious identifier is also eliminated from
consideration as a candidate for leader. This activity demon-
strates how self-repairing algorithms can withstand data cor-
ruption using only local communication and coordination.

4. DESIGNING KINESTHETIC LEARNING
ACTIVITIES

Developing a KLA requires careful planning. A poorly
planned activity will waste class time, and may even be ped-
agogically harmful, undermining the intended lesson. The
design of a KLA should begin with an explicit statement of
the learning objectives it is meant to support. The activity
should then be designed around these learning objectives.

In addition to this basic principle, the following heuristics
are helpful in creating effective KLAs.

• Incorporate an element of surprise. With parallel garbage
collection, students are surprised when the “obvious”
algorithm does not produce the correct result.

• Involve multiple senses and dimensions of engagement.
In the leader election activity, students are observing
neighbor values while modifying their own.

• Anticipate and accommodate mistakes. There will al-
most certainly be too many concurrent activities to be
able to monitor them all. The activity should either
be robust enough to tolerate the occasional mistake, or
checks should be incorporated to reduce the chances of
such a mistake occurring.

• Engage the entire class. If the activity can not be
scaled to include every student directly, it should be
designed to encourage non-participants to identify with
participants, and thus be involved at least vicariously.

• Provide simple directions to participants. If the in-
structions are complicated, there is a greater chance
of mistakes being made. Also, if students are too en-
grossed in their local computation, the bigger picture
can be hard for them to see.

Even if an activity has been carefully planned, a practice
run is an invaluable aid in assessing how it will work in
a classroom setting. A small, friendly group can provide
feedback and insight into an activity’s dynamics and can
help refine the details of the presentation to improve its
chances of success in the classroom.

5. CONCLUSIONS
KLAs promote student interactivity and improve student

learning by engaging a fundamental and ubiquitous learn-
ing style. For this reason, courses across all disciplines can
benefit from the inclusion of such activities. Courses on dis-
tributed computing, however, are ideally suited for KLAs
since they naturally incorporate concurrency and locality of
computation. Self-stabilization improves the robustness of
KLAs to participant error.

We have provided here a collection of KLAs developed for
use in our courses on distributed computing. Our hope is
that others will adopt these activities for their own courses,
as well as use this collection as a template for developing new
activities that they later share with the community, too.

6. REFERENCES
[1] D. P. Ausubel, J. D. Novak, and H. Hanesian.

Educational Psychology: A Cognitive View. Holt,
Rinehart and Winston, 2nd edition, 1978.

[2] A. Begel, D. D. Garcia, and S. A. Wolfman.
Kinesthetic learning in the classroom. In SIGCSE ’04:
Proceedings of the 35th SIGCSE technical symposium
on Computer science education, pages 183–184, New
York, NY, USA, 2004. ACM Press.

[3] B. S. Bloom, M. D. Engelhart, H. H. Hill, E. J. Furst,
and D. R. Krathwhol, editors. Taxonomy of
Educational Objectives. The Classification of
Educational Goals, Handbook I: Cognitive Domain.
David McKay Company, Inc, New York, 1956.

[4] C. C. Bonwell. Enhancing the lecture: Revitalizing the
traditional format. New Directions for Teaching and
Learning, 67:31–44, Fall 1996.

[5] P. Bucci, T. J. Long, B. W. Weide, and
J. Hollingsworth. Toys are us: Presenting
mathematical concepts in CS1/CS2. In Proceedings of
the 30th ASEE/IEEE Frontiers in Education
Conference. IEEE Computer Society Press, 2000.

[6] K. M. Chandy and J. Misra. Parallel Program Design:
A Foundation. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1988.

[7] E. W. Dijkstra. On anthropomorphism in science.
EWD936, Sept. 1985.

[8] S. Dolev. Self-Stabilization. MIT Press, 2000.

[9] C. G. Jung. Psychological Types. Routledge, 1992.
Original work published in 1921.

[10] H. L. Lujan and S. E. DiCarlo. First-year medical
students prefer multiple learning styles. Advances in
Physiology Education, 30(1):13–16, March 2006.

[11] I. B. Myers, M. H. McCaulley, N. L. Quenk, and A. L.
Hammer. MBTI Manual: A Guide to the Development
and Use of the Myers-Briggs Type Indicator.
Consulting Psychologists Press, 3rd edition, 1998.

