Using Parse Tree Validation to
Prevent SQL Injection Attacks

Greg Buehrer, Bruce Weide, and
Paul Sivilotti

Computer Science & Engineering
The Ohio State University

paolo@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~paolo

Web Application Architecture

Client http request Application
(i (pEnpieatiRE) =

greg
secret

s html response

3 Scenaria List - Mailla Fineta
G e

result set SQL query

wl

Database

Scenario List

n SQL Injection:

Anatomy of a Vulnerability

Application
Statement s = conn.createStatement(); 7
String q = “ ” greg
+ 7+ user secret
+ ” + pass
4o
ResultSet RS = s.execute(q);
— SQL query
SELECT * FROM scenarios
WHERE username=‘greg”
AND password=“secret”; é‘ll
Database

3

n SQL Injection:

Anatomy of a Vulnerability

Application
Statement s = conn.createStatement();
String q = “ ” greg”;--
+ ¢ ” + user -[[| anything
+ “ ” + pass
+ H
ResultSet RS = s.execute(q);
— SQL query
greg”;--
anything a‘_‘l
SELECT * FROM scenarios I
WHERE username=*“greg”; Database

4

Many Forms of SQL Injection

Add comment character

., #

= Remove end of query
Add a tautology

= OR 1=1, OR “7’=*7, .

= All table rows satisfy the query
Add a statement

= ;DROP TABLE scenarios
Can be complicated, multi-step
= Insert unexpected value in table
= eg admin’-- as a username
= Exploit this value in subsequent query

Preventing SQL Injection (1)

“Sanitize" the input, removing all bad characters
= Remove ' - =
u Flag occurrence of valid SQL keywords (DROP, OR,...)
u Problem: sometimes these characters are okl (e.g., O'Reilly)
Replace ' in user input with '
= SQL treats'' as asingle quote literal
= SELECT * FROM users WHERE name='0' 'Reilly'
= Problem 1: undermined by other ways to escape input
= Example: backslash also yields literal: \'
= username passed in: \'; DROP TABLE users; --
= Double quotes to get: \'; DROP TABLE users; --
= SELECT * FROM users WHERE name="\""; DROP TABLE users; --'
= Problem 2: other encodings (e.g., unicode)
= Problem 3: integer fields do not have quotes
= SELECT * FROM users WHERE userid=23 OR 1=1;

Preventing SQL Injection (2)

“Sanitize" the input, confirming it contains only good
characters

= Regular expressions, static analysis

= Problems: hard to get right, a lot to ask of programmers
SQLRand

u Replace SQL tokens with secret random values

= Attacker can not write syntactically correct SQL

= Problem: easy to leak secret (e.g., error messages)
Prepared statements

= Create query as a parameterized statement
String q = “ ?
e

PreparedStatement ps = conn.prepareStatement(q);
ps.setObject(l,user);

u The best solution, really the right way to do things

= Problems:
= Annoying to use (syntax for replacing ?'s can be awkward)
= Dynamic length queries

1 Our Approach: Best of Both

Worlds
Benefits of prepared statements
m Guarantee preservation of parse free
Benefits of dynamic string
concatenation
= Easy, natural programming style
m Consistent with state-of-the-practice

Parse Tree Validation

Assume the existence of a special character, #
= Never part of user input, never part of an SQL query
Use this character to demarcate user input

&gregs
#secretd

Compare the parse trees of two strings:
1. The string with all text between pairs of # replaced by
a literal token (i.e., a special leaf in the parse tree)

?
| ;

2. The string with all occurrences of # removed
greg ‘

‘ secret

Parse Tree Comparison

‘ 2

<select list> <table expr>

<table list>

<bool term>

<table> <bool term> <bool fact>
‘ <bool fact> ‘ ‘ <comparison> ‘

‘ <comparison> ‘ ‘ <col ref> ‘ ‘ <value> ‘

<col ref> <value>

Parse Tree Comparison

greg
secret

<bool term>

[<bool fact> | [<comparison> |
[<comparison> | [<col ref> | [<value> |
<col ref> <value>

Parse Tree Validation Rule

Accept the SQL query if
u The structures of the two parse trees
are exactly the same (node types), and

u The values of corresponding nodes in the
two parse trees are exactly the same,
except for the special (green) leaf
nodes.

Otherwise, reject the query as
insecure

Revisiting our Assumption

Technique is predicated on a reliable way
to demarcate user input

= Special character (+) that can not be part of
user input

m Otherwise, attacker could circumvent
= input: secrets” OR “a’=“aa

But user input could include anything
Solution:
= Generate unique, fixed-length, random

(unpredictable), private key for each query
m Prefix each query with its key
= Our prototype uses 64-bit keys (8 char)

Ease of Use

Connection conn = SafeDriverManager.getConnection(DB);

Statement s = conn.createStatement();
String g = SQLGuard.init(Q) + “
+ ” + SQLGuard.wrap(user)

+ ” + SQLGuard.wrap(pass)
PR

ResultSet RS :;

RS.close(Q);

conn.close()

Multithreading

For scalability to many users, web

applications are highly concurrent and

multithreaded

m SQLGuard must generate and keep track of
multiple keys simultaneously

Concurrent calls to SQLGuard must be

serialized

Calls to wrap() must be associated with

correct (matching) call to init()

= Thread id used to distinguish instances

WBH#pER7}SELEC ios
WB#pER7}gregw8#pER7}”
WB#PER7}secretw8#pER7}”

u3Gd(lIcA
u3Gd(IcAgregu3Gd(lca
u3Gd(IcAsecretu3Gd(lca

w; hX@K--

w; hX@K--gregw; hX@K--
w; hX@K--secretw; hX@K--

WHERE usSELEC
WHERE us
AND password

scenarios
=“WHERE usgregWHERE us~”
WHERE ussecretWHERE us

Architecture

encapsulates
SafeDri

l creates

creates

|_implements

implements
| (o)
uses
SQLGuard
init()
verify()
wrap(s)

Performance Considerations

Query Time (ms)

10 -+ Statements
-= Guarded Statements

7 19 25 35 50
Number of Tokens

Performance Considerations

Using Parse Tree Validation to
Prevent SQL Injection Attacks

Greg Buehrer, Bruce Weide, and
Paul Sivilotti

Computer Science & Engineering
The Ohio State University

paolo@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~paolo/sof tware

Conclusions

All known forms of SQL injection involve
modification of the intfended parse tree

= Our approach guarantees that dynamically
provided parameters are leaf nodes only

= Modification of intended parse tree is not
possible

Limitations:

= Unguessability of demarcation key

= Quality of error message available for client

m SQL tutorial web application

Implementation available at

= http://www.cse.ohio-state.edu/~paolo/software

20

Discussion Points

Tension between weak & strong typing
m weak typing: flexibility, rapid
development, prototyping

m strong typing: correctness, confidence,
security

= trend: weaker typing
= e.g., scripting languages, HTTP

22

