
Container-Based Component Deployment: A
Case Study

Nigamanth Sridhar, Jason O. Hallstrom, and Paolo A.G. Sivilotti

Computer and Information Science
The Ohio State University

2015 Neil Ave
Columbus OH 43210 USA

{nsridhar,hallstro,paolo}@cis.ohio-state.edu

Abstract. A component container, similar to those used to host Enter-
prise Java Beans, is a runtime environment that manages the execution of
components. We have previously described the design and implementa-
tion of DRSS, a container architecture for Microsoft’s .NET Framework
that provides support for dynamic component deployment. In this paper,
we examine the deployment models supported by DRSS, and illustrate
their principal advantages in the context of a case study. We describe the
evolution of a distributed conflict resolution protocol, with an empha-
sis on evolving network performance, failure-locality, and visualization
support.

1 Introduction

A component container is a runtime environment that manages the execution
of components. The container itself can be thought of as a specialized kind of
Collection instance, not so dissimilar from the Collections provided by standard
class libraries. What distinguishes a component container from the Collection
classes provided by frameworks like Java and .NET, however, is that a compo-
nent container influences the behavior of the components contained within it.
Container-hosted components are subject to behavioral transformations that ex-
tend the functionality provided by the components in isolation. While a container
may impose architectural constraints on the components it hosts, the function-
ality extensions provided by the container can often be achieved without the
hosted components having been explicitly designed to support such extensions.
So, for example, a component can be imbued with persistence by virtue of being
deployed in its hosting container, without the component having been explicitly
designed to support persistence.

Perhaps the most well-known example of a component container is the EJB
container described in the Enterprise Java Beans specification [15]. Indeed, in-
dustry practitioners often use the terms “component container” and “EJB con-
tainer” interchangeably. An EJB container, however, is just one example of a
more abstract concept. Another implementation of this concept is described



2 Sridhar, Hallstrom, and Sivilotti

in [11], which presents the design and implementation of the Dynamic Reconfig-
uration Sub-System (DRSS) container for Microsoft’s .NET Framework. While
similar in spirit to an EJB container, DRSS provides for greater flexibility with
respect to component deployment.

In this paper we describe the DRSS deployment model, and illustrate the
utility of the model in the context of a case study documenting a resource al-
location component that we have built for DRSS. We focus on the following
deployment advantages offered by DRSS.

– Dynamic Component Deployment. DRSS enables the dynamic deploy-
ment and removal of container-hosted components, as well as the dynamic
substitution of new component implementations. The model provides seman-
tic consistency guarantees that are enforced by our prototype implementa-
tion.

– Dynamic Service Deployment. DRSS enables the dynamic deployment
and removal of cross-cutting container services, allowing the set of container-
supplied component extensions to vary at runtime.

– Flexible Scoping of Behavioral Transformations. DRSS allows for flex-
ible scoping over the effects of behavioral transformations applied by the
container. That is, DRSS allows the designer to easily specify the set of
container-hosted components that should be influenced by the deployment
of a new container service.

Paper Organization. The rest of this paper is organized as follows. We give a
brief overview of component containers and some background in the area, along
with an introduction to interceptors in Section 2. In Section 3, we outline the
deployment model used by DRSS, and some of the advantages of using this
deployment model. We illustrate each of these advantages by way of a detailed
case study in Section 4, and conclude in Section 5.

2 Component Containers

A component container behaves like a barrier, protecting the enclosed con-
tents from potentially damaging interactions with a harsh environment. In this
case, the harsh environment consists of client components that depend on their
container-hosted counterparts to implement their operations. Consider, for ex-
ample, a container that provides authentication and access control to its hosted
components. When designing components for such a system, the hosted com-
ponents will not include support for such security concerns. To do so would be
redundant, as those concerns are dispatched by the security services supplied by
the container. As a consequence, if a client were to access one of these compo-
nents directly, outside the container’s purview, security could be compromised.
Therefore, container-hosted components must never be accessed directly. All in-
teraction must be mediated by the host.

The hosting container is the sole client of each component that it maintains;
container-hosted components cannot be aliased. When a client requires access



Container-Based Component Deployment 3

to a component within the container, it must request a reference to the desired
component using the container interface. (This is true even if the client com-
ponent is container-hosted.) In response, the container returns a proxy [9] that
appears to the client as the component itself. Invocations on the proxy are mar-
shaled by its underlying implementation, which notifies the container of each
invocation request. Each request is intercepted by the container, which eventu-
ally performs the requested invocation on behalf of the requesting client. After
performing an invocation, the container marshals the results of the invocation
(e.g., post-conditional argument values, return values, exceptions), and even-
tually delivers the marshaled results back to the initiating proxy. Finally, the
proxy uses these results to respond to the client as though it were the compo-
nent itself. The initiating client is unaware of the additional levels of indirection,
which are maintained throughout the lifetime of the component. The invoca-
tion model, which is markedly similar to that used by commercial middleware
implementations like Java RMI [10] and CORBA [18], is illustrated in Figure 1.

Fig. 1. DRSS invocation model

The additional indirection introduced by a component container is not inci-
dental to the architecture. In fact, the additional indirection is precisely what
enables the container to transparently transform component functionality. When
a component container is notified of an invocation request, it need not deliver
the request immediately. Instead, the container can inject additional services
in the path of the invocation before it is eventually delivered to the invocation
target. It might also inject additional services on the return-trip, before the mar-
shaled response is delivered to the initiating proxy. Although it is somewhat trite,
the canonical example of a container-supplied service is invocation logging. By
simply recording the marshaled invocation requests it receives, a container can
transform the behavior of its hosted components to include support for invoca-
tion logging. Of course the underlying implementations of the hosted components
are unaffected; the container performs the logging work. From a client’s perspec-
tive, however, the hosted components have been transformed. A more complex



4 Sridhar, Hallstrom, and Sivilotti

example is discussed in [17], where the authors use container-based mediation to
implement invariant-based state monitoring for an enterprise J2EE application.

The additional services supplied by a container can also be modularized as
reusable components. These specialized components are termed interceptors, and
operate on marshaled invocation requests and responses. In essence, an inter-
ceptor is a meta-level entity that transforms the behavior of the components
to which it is applied. This meta-level property makes interceptors capable of
effecting cross-cutting [16] transformations.

Regardless of the functionality they provide, each interceptor supplies an
identical interface. Although the actual methods vary from implementation to
implementation, conceptually, each interceptor provides one method for pro-
cessing an invocation request, and another method for processing an invocation
response. This interface equivalence makes them easily composable as intercep-
tor chains. An interceptor chain is itself an interceptor, composed of individual
interceptors arranged in sequence. When an interceptor chain method is invoked,
the chain implementation calls the corresponding method of each interceptor in
the underlying sequence. These chain methods are invoked automatically by the
container in response to an invocation request or an invocation response. As a
result, the container can inject a number of cross-cutting services in the path of
component collaborations, without compromising component encapsulation.

3 DRSS-Based Component Deployment

We now turn our attention to the DRSS container, focusing on the two compo-
nent deployment models that it supports. The first model targets the deployment
of application-level components hosted by the container. The second model tar-
gets the deployment of interceptor components, which modularize the services
the container provides. We restrict our attention to the deployment details, re-
ferring the reader to [11] for a full treatment of the DRSS design.

3.1 Dynamic Component Deployment

The DRSS container is realized as a standard class implementation for the .NET
Framework. An instance of this class must be declared by every DRSS-based ap-
plication. As part of its interface, the DRSS container provides management
methods for controlling the dynamic deployment and removal of hosted compo-
nents. This interface is exposed by the container to remote processes, enabling
third-party management over the deployment process.

When deploying a component, the instance to be hosted is not passed to
the container directly. If this were the case, it would be possible for clients to
store a reference to the component before it was deployed. After deployment,
clients could then bypass the container, thereby bypassing the additional services
supplied by the container. Therefore, to deploy a component, the component
must be created by the container directly. This is achieved by requiring the client
to pass the type information corresponding to the component to be deployed,



Container-Based Component Deployment 5

as well as the arguments to be passed to the component’s constructor. When
invoked, this container method constructs an instance of the type passed as
argument, and registers the instance under a unique ID that is returned to the
client. This ID can later be used to remove the instance from the container,
assuming there are no outstanding proxies associated with the instance.

The DRSS management interface additionally provides support for dynamic
module substitution. That is, the interface provides methods for substituting new
component implementations for existing implementations dynamically, without
disrupting the services supplied to component clients. The container implements
this functionality by temporarily blocking access to the instance to be replaced.
If the component being replaced is stateful, the container will then transfer the
abstract state of the existing implementation to the new implementation. This is
achieved by reflecting on both the new and existing component implementations,
to determine whether they both provide the appropriate state transfer functions.
In particular, if both components provide a method for serializing their abstract
state, as well as a method for de-serializing their abstract state, the container
will perform the state transfer automatically. Finally, the container disposes
of the existing implementation, and updates its reference table to refer to the
new implementation. All future invocation requests destined for the original
component instance will now be directed to the new component instance. This
implementation leverages work described in [14, 1].

3.2 Dynamic Service Deployment

In commercial architectures like J2EE, the set of services supplied to container-
hosted components is fixed once the container has been initialized. This static
deployment precludes the dynamic adaption of the services supplied by the con-
tainer. So, for example, if increased security risks are detected, it is impossible
to deploy additional container-based security services without bringing the con-
tainer down for maintenance. This is of course an inappropriate strategy for
systems with high availability requirements.

To overcome this problem, the DRSS container provides methods as part
of its management interface for dynamically deploying and removing container-
supplied services. This is made possible by the fact that DRSS relies on inter-
ceptors to modularize the services that it supplies to hosted components. These
interceptors are maintained as chains, and the container interface allows remote
processes to manage the interceptors contained in these chains. In particular,
given a particular chain, the management interface provides methods for insert-
ing and removing interceptors.

3.3 Flexible Scoping

Commercial container architectures like EJB, and academic container architec-
tures like E”Speak [13], provide support for interceptor composition via intercep-
tor chains. These containers each support only a single interceptor chain that is



6 Sridhar, Hallstrom, and Sivilotti

shared among all container-hosted components. As a consequence, these contain-
ers do not provide a mechanism for scoping the effects of interceptor-supplied
behavioral transformations. Any change to the interceptor chain results in a
behavioral transformation that effects all components hosted by the container.

DRSS also supports interceptor composition via interceptor chains. However,
the DRSS container provides methods for managing multiple chains. Using the
management interface, it is possible, for example, to bind one set of container-
hosted components to chain A, and to bind another set of container-hosted
components to chain B. Whenever chain A is modified, the resulting behavioral
effects will only influence components in the first group. Similarly, changes to
chain B will only effect components in the second group. With respect to chain
management, the DRSS container provides methods for creating new chains,
removing existing chains, binding components to chains, and unbinding compo-
nents from chains. These methods allow for flexible scoping over the effects of
container-supplied behavioral transformations.

4 Case Study: Dining Philosophers

Roadmap. We now present a case study using which we illustrate the afore-
mentioned advantages of the deployment model offered by DRSS. We present
a utility component (named Philosopher) that applications deployed into DRSS
can use to manage their resource allocation needs. The component uses a solu-
tion to the dining philosophers problem as the conflict resolution policy. Further,
this component can be used to provide other conflict resolution policies as well
through minimal modifications. For example, if the conflict graph were fully con-
nected (the 1-neighborhood of any node describes the entire graph), then the
resulting policy is mutual exclusion.

We demonstrate dynamic component deployment by first starting an applica-
tion with one implementation of the Philosopher component — the Asynchronous
Doorway implementation [5, 6]. We show some disadvantages of this algorithm
in terms of performance, and use dynamic module substitution to replace this
implementation with a new one — the Hygienic implementation [3]. Next we
show how the failure locality (a measure of the robustness of an algorithm in the
presence of faults) of this algorithm can be improved by dynamically deploying
a fault localization service. Finally we illustrate how we can dynamically control
the scope of services injected into the container architecture by deploying a visu-
alization service to monitor the Philosopher component alone, without affecting
the application layer that makes use of the Philosopher component.

Problem Specification. The generalized dining philosophers problem can be
viewed as a graph in which the nodes represent processes and the edges define the
adjacencies between processes (the neighbor relation). This graph is known as
the conflict graph. A process in the conflict graph can be either thinking, hungry,
or eating; the allowable transitions between these states is shown in Figure 2.
Processes eat for a finite amount of time, but may think indefinitely. Processes



Container-Based Component Deployment 7

control their transitions from thinking to hungry and from eating to thinking,
while a conflict-resolution layer controls their transitions from hungry to eating.

Fig. 2. States and allowable transitions for dining philosophers

The specification of the dining philosophers problem can be stated as the
following two conditions:

Safety: No two neighbors eat simultaneously.
Progress: Every hungry process is allowed to eat eventually.

In this paper, we consider two solutions to the dining philosophers problem,
both of which are fork-based — they use forks to ensure safety. A fork is a token
that is shared by every two vertices that share an edge. Further, the fork is
indivisible and can therefore reside only at one vertex. In order to eat, a process
must collect all the forks it shares with its neighbors. This guarantees that no
two neighbors eat at the same time, satisfying the safety property above.

Implementation 1: The Asynchronous Doorway Algorithm. The asyn-
chronous doorway algorithm1 [5] for dining philosophers uses a fault-tolerant
fork collection scheme that uses a pre-emption mechanism based on assigning
static priorities to the processes in the conflict graph. A fixed partial ordering is
computed by node-coloring the conflict graph. The fork collection scheme is split
in two parts; when a process becomes hungry, it first requests and acquires forks
from all of its higher-priority neighbors. Once it has acquired all of these forks,
the process is said to be at its threshold. Until a process reaches its threshold,
any of its neighbors, regardless of priority can pre-empt it by requesting a fork.
However, once the process is past its threshold, it is protected from being pre-
empted by its lower-priority neighbors. Higher-priority neighbors can, however,
always pre-empt a process at any time, causing it to leave the threshold.

Since the priorities of processes is static, some processes will always be able
to pre-empt their lower-priority neighbors, thereby thwarting their progress. In
order to ensure progress, the algorithm makes use of a doorway that a process
has to enter once it reaches its threshold. When a process is inside the doorway,
it cannot be pre-empted by any of its neighbors, including its higher-priority
neighbors. Moreover, no process can be overtaken more than once in getting into
1 Algorithm 2 as presented in [5]



8 Sridhar, Hallstrom, and Sivilotti

the doorway. The fork-collection scheme, along with the doorway satisfies the
progress specification of the dining philosophers problem. We refer the interested
reader to [5] for a detailed presentation of this algorithm along with proofs of
correctness.

One of the reasons we picked this implementation of dining philosophers is
because of our long-standing interest in fault-tolerant systems — the algorithm
has a low (constant) failure locality of 3. Failure locality is a measure of the
robustness of an algorithm in the presence of faults. The m-neighborhood of a
process p is defined as the set of processes at most m hops from p. (The 0-
neighborhood of a process p is just p itself, and its 1-neighborhood is p and its
immediate neighbors.) A resource-allocation algorithm is said to have a failure
locality of m if a process is not affected by the failure of a process outside its
m-neighborhood.

However, this implementation of the algorithm was not efficient because it
performs poorly in terms of the more commonly used metrics of response time
and message complexity. Response time is the delay between a process requesting
access to a shared resource and access being granted to that process. Message
complexity is the number of messages sent in the system as a result of a single
process requesting access to a shared resource. The response time of the asyn-
chronous doorway algorithm is O(δδ+2) and its message complexity is O(δδ+3),
where δ is the maximum degree in the conflict graph. Since both these metrics
are exponential, we picked a different implementation that improved on these
metrics — the hygienic algorithm [4]. The hygienic algorithm for dining philoso-
phers has the advantage of optimal message complexity (O(δ)), and its response
time is O(n), where n is the total number of processes in the conflict graph.

Implementation 2: The Hygienic Algorithm. The hygienic solution to the
dining philosophers problem is a fork-based algorithm based on maintaining a
partial order of priority among processes, as shown in Figure 3. That is, the
edges of the conflict graph are given directions such that the graph is acyclic.
A directed edge in the conflict graph points from a the lower priority neighbor
to the higher priority neighbor. A fork held by a higher priority neighbor is said
to be clean, while one held by a lower priority neighbor is said to be dirty. In
Figure 3, for example, the fork shared between nodes L and J is currently at L,
and is dirty, since L has lower priority than J; and the fork shared between nodes
L and M is currently at node M and is clean, since M has higher priority than L.

When two hungry processes compete for the same fork, the conflict is resolved
in favor of the higher-priority process. In other words, a request for a dirty fork
is always honored (since such a request came from a higher-priority neighbor),
whereas a request for a clean fork is deferred (since the request came from a
lower-priority neighbor). As the reader may have observed, these policies only
apply when the process receiving a fork request is hungry; if the process were
thinking, all requests would immediately be honored, and if it were eating, all
requests would be deferred until it finished eating. There is no deadlock because
of the acyclicity of a partial order (a “waits-for” cycle cannot form among pro-



Container-Based Component Deployment 9

Fig. 3. Conflict graph showing priorities and partial order in hygienic solution to dining
philosophers

cesses). The hygienic algorithm is presented in the form of guarded commands
in Figure 4. For a full treatment of the hygienic dining philosophers algorithm,
along with a proof of correctness, please see [4].

Become hungry →
if hold all forks, begin eating
else request all missing forks

Receive fork →
flip state of fork (clean/dirty)
if hold all forks, begin eating

Receive request →
if fork is dirty and not eating

send fork, and if hungry, re-request
else defer request

Done eating →
all forks become dirty
satisfy deferred fork requests

Fig. 4. Original hygienic algorithm (reproduced from [12])

4.1 Dynamic Module Substitution

Now that we have a better implementation of the Philosopher component (in
terms of message complexity and response time), how do we allow the appli-
cation to take advantage of it without having to restart the application? DRSS
supports dynamic module substitution — a mode of dynamic reconfiguration that
enables the implementation of a component to be changed or “hot-swapped” at
run-time. Such substitution is possible in DRSS because any component hosted



10 Sridhar, Hallstrom, and Sivilotti

inside a DRSS platform instance is sitting behind an extra level of indirection.
This extra level of indirection decouples a key run time dependency — the de-
pendency between an abstract component interface and the concrete component
implementation that is being used by a client program. Since the container ar-
chitecture controls this extra level of indirection, modifications can be performed
to the component instance hosted inside the container without the client ever
knowing about them.

In order to effect the substitution of the Philosopher implementation, from
the asynchronous doorway implementation to the hygienic implementation, we
use the strategy detailed in [14]. Of the five stages outlines in that article, Ini-
tiation, Module Rebinding, and Instance Rebinding are supported by the DRSS
architecture directly [11]. We also use the same techniques for State Migration
as those described in [14].

In order to ensure that Module Integrity is respected, we again use the algo-
rithm described in [14]. The DRSS administrator deploys a new (special) Philoso-
pher node, and this node makes itself a neighbor of all nodes in the current con-
flict graph. In this manner, the administrator node can use the dining philosopher
implementation to force quiescence among all other nodes in the conflict graph
— for any node to eat, it has to have all of the forks it shares with its neighbors;
since the administrator node is a neighbor of every single node in the graph,
when it has collected all of its forks, no other node in the entire network can eat.
Safety is thus ensured during the process of module substitution. The argument
for correctness in terms of progress is detailed in [14].

Dynamic component deployment. The aforementioned steps can be used to hot-
swap the implementation of the Philosopher utility component without ever hav-
ing to stop the application layer. In fact, the application layer is not even in-
formed about the change, and is not affected in any way with respect to correct-
ness. The application may, and will most likely, be able to observe a degradation
of performance in the dining philosophers layer, but this degradation is transient.
This ability to effect dynamic module substitution is afforded by the dynamic
component deployment feature of the DRSS container architecture’s deployment
model (Section 3.1).

4.2 Fault Localization

We mentioned towards the beginning of the case study that one of the motiva-
tions of using the asynchronous doorway implementation of dining philosophers
was because of its good failure locality. How does the failure locality of the hy-
gienic algorithm compare? It turns out that although the hygienic algorithm is
advantageous in terms of response time and message complexity, it suffers from
poor failure locality, since it allows the formation of extremely long dependency
chains. The problem is that a process p never yields to a lower-priority neighbor
even if p is still missing forks from its higher-priority neighbors. This can lead to a
dependency chain, in the worst case, of O(n), where n is the number of processes.
The failure locality of this algorithm is therefore d, the diameter of the graph



Container-Based Component Deployment 11

Become hungry →
if hold all forks, begin eating
else request all missing forks

Receive fork →
flip state of fork (clean/dirty)
if hold all forks, begin eating

Receive request →
if fork is dirty and not eating

send fork and, if hungry, re-request
else if skeptical and not eating

send fork
else defer request

Become skeptical →
if not eating

satisfy deferred fork requests
Stop being skeptical →

if hungry
if hold all forks, begin eating
else request all missing forks

Done eating →
all forks become dirty
satisfy deferred fork requests

Fig. 5. Transformed hygienic algorithm (reproduced from [12])

— a single failure anywhere in the network could potentially bring the entire
network to a halt. Such bad failure locality is intolerable in our fault-tolerance
applications. How do we account for this degradation in failure locality?

In [12], Pike and Sivilotti propose a transformation of the hygienic algorithm
into one that has a failure locality of 1. This transformation uses an eventu-
ally perfect (3P) failure detector [2]. This transformer works in a partially syn-
chronous model, wherein some timing constraints can be enforced, as opposed
to an asynchronous model, where no such timing constraints are available ow-
ing to the lack of a global clock. This strengthening of the model from pure
asynchrony to partial synchrony, however, does not over-simplify the problem
since some timing constraints are, in fact, enforceable (to an extent) in real
systems [7, 8]. This transformed hygienic algorithm is presented in the form of
guarded commands in Figure 5.

We use this 3P-based transformation in the DRSS container architecture
to provide a fault-containment service to the components deployed in the con-
tainer. The service is implemented using a set of interceptors, one at each dining
philosopher node, that collectively perform the function of the 3P failure detec-
tor. Any message that a philosopher node sends or receives is monitored by the
interceptor associated with it. Based on the observations that it makes about
whether neighbors are alive or crashed, the interceptor may make modifications
to the messages; these modifications reduce the failure locality of the hygienic
algorithm to 1.

The transformation is based on the concept of skepticism. When the failure
detector associated with a philosopher thinks that one of its neighbors is crashed,
this neighbor is added to a suspect list, and the philosopher process becomes
skeptical. At this point, it lowers its priority below all of its neighbors (makes all
of its forks dirty), and honors any pending requests. As long as the suspect list
is non-empty, the detector associated with this philosopher remains skeptical.
A process does not attempt to collect forks while it is skeptical. By staying



12 Sridhar, Hallstrom, and Sivilotti

hungry (and skeptical), this process insulates the rest of the network in case
one of its neighbors has crashed while holding a fork. When a process stops
being skeptical — as a result of the suspect list becoming empty — it returns
to its normal behavior. Please refer to [12] for the proofs of correctness for the
transformation, and the transformed algorithm.

Dynamic Service Deployment. The failure detector described above is imple-
mented completely outside of the dining philosopher layer. In fact, the Philoso-
pher component is not even aware of the existence of this interceptor. The de-
ployment of the fault localization service is transparent, both to the Philosopher
layer and the application layer. The interceptors that make up the service are in-
jected into the interceptor chains for the container platform instance as detailed
in Section 3.2.

4.3 Component Visualization

The last service we describe in this paper is a visualization service for the com-
ponents hosted in the DRSS container architecture. The visualization service
for the Philosopher component monitors the entire conflict graph and shows the
movement of messages and forks among the philosopher nodes. The visualization
service is deployed into one Philosopher node’s container platform instance as the
bootstrap mechanism. The service then follows the messages that flow in and
out of this platform instance to discover the other nodes that are part of this
conflict graph. Every time a new platform is discovered, the discovery process is
restarted at that node, looking for its neighbors and so on. In this manner, the
service is an eventually perfect stabilizing visualization service.

Once all the nodes have been discovered, the service keeps track of the local
state of each Philosopher node — thinking, hungry, eating. Any change in (i)
the local state of any node, (ii) the location of the forks in the conflict graph,
and (iii) the partial order among nodes imposed by their priorities, is shown by
graphically modifying the visualization interface.

As with the fault localization service, the visualization service is also deployed
as a set of interceptors. Each Philosopher node is monitored by an interceptor,
and each interceptor is responsible for updating the state of the Philosopher
it is associated with, on the visualization interface. Aside from the local state
of the node, the interceptor also examines each message passing in or out and
updates the status of the forks, and direction of the arrows on the edges between
neighboring nodes in the conflict graph.

Flexible Scoping. The deployment mechanism for the visualization service is the
same as with the fault localization service, except for the scope of application
of the service. Rather than deploying the interceptors into all the interceptor
chains in a platform instance, they are deployed only into the chains that the
Philosopher layer is listening on, and not the other chains. That way, only the
Philosopher nodes are visualized, while the application layer (which is also hosted
by the same platform instance) is not visualized.



Container-Based Component Deployment 13

5 Conclusions

In this paper, we have described the deployment model provided by the Dy-
namic Reconfiguration Sub-System (DRSS) — a dynamic, open container archi-
tecture built for the Microsoft .NET framework. As opposed to the commercially-
available J2EE container architecture, DRSS affords a flexible, and extensible
deployment model. The three main advantages of the deployment model are:

– Dynamic component deployment,
– Dynamic service deployment, and
– Flexible scoping of deployed services.

We have illustrated these advantages in the context of a detailed case study
involving a utility component that provides resource allocation services to appli-
cations hosted inside DRSS. We have demonstrated the capabilities of dynamic
module substitution, and dynamic deployment of fault-containment and visual-
ization services.

Acknowledgments

This work has been supported by the National Science Foundation (NSF) un-
der grant CCR-0081596, by Lucent Technologies and by Microsoft Research.
Any opinions, findings, and conclusions or recommendations expressed in this
paper are those of the author and do not reflect the views of the NSF, Lucent
Technologies, or Microsoft Research.

The authors would also like to extend a special note of thanks to Scott Pike
for his helpful comments during the implementation of the fault localization
service and the writing of this paper.

References

1. M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recov-
ery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

2. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

3. K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Trans.
Program. Lang. Syst., 6(4):632–646, 1984.

4. K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, Reading, MA, USA, 1988.

5. M. Choy and A. K. Singh. Efficient fault tolerant algorithms for resource allocation
in distributed systems. In ACM Symposium on Theory of Computing, pages 593–
602, 1992.

6. M. Choy and A. K. Singh. Localizing failures in distributed synchronization:. IEEE
Transactions on Parallel and Distributed Systems, 7(7):705–716, 1996.

7. D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for
distributed consensus. J. ACM, 34(1):77–97, 1987.



14 Sridhar, Hallstrom, and Sivilotti

8. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995.

10. W. Grosso. Java RMI. O’Reilly & Associates, 1st edition, 2001.
11. J. O. Hallstrom, W. M. Leal, and A. Arora. Scalable evolution of highly-available

systems. IEICE/IEEE Joint Special Issue on Assurance Systems and Networks,
May 2003. (to appear).

12. S. M. Pike and P. A. G. Sivilotti. Dining philosophers with crash locality 1. In
Proceedings of the 24th IEEE International Conference on Distributed Computing
Systems. IEEE, 2004. (to appear).

13. J. Pruyne. Enabling qos via interception in middleware. Technical Report HPL-
2000-29, HP Laboratories, February 2000.

14. N. Sridhar, S. M. Pike, and B. W. Weide. Dynamic module replacement in dis-
tributed protocols. In Proceedings of the 23rd International Conference on Dis-
tributed Computing Systems, pages 620–627, May 2003.

15. SunMicrosystems. J2ee 1.3 specification. http://java.sun.com/j2ee/download.html,
July 2001.

16. P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N degrees of separation:
multi-dimensional separation of concerns. In Proceedings of the 21st international
conference on Software engineering, pages 107–119. IEEE Computer Society Press,
1999.

17. G. J. Vecellio and W. M. Thomas. Infrastructure support for predictable pol-
icy enforcement. In Proceedings of the 6th ICSE Workshop on Component-Based
Software Engineering, May 2003.

18. S. Vinoski. Distributed object computing with corba. C++ Report Magazine,
1993.


