b THE OHIO STATE UNIVERSITY

W COLLEGE OF ENGINEERING

Using Minicasts for
Efficient Asynchronous
Causal Unicast and
Byzantine Tolerance

Laine Rumreich and Dr. Paul Sivilotti

Overview

1. Efficient asynchronous causal unicast
2. Byzantine-tolerant asynchronous causal unicast

\.
q N
N

THE OHIO STATE UNIVERSITY
) COLLEGE OF ENGINEERING

Efficient Asynchronous Causal Unicast

D THE OHIO STATE UNIVERSITY
[P COLLEGE OF ENGINEERING

Background

Causal Message Ordering

Let i and j be two messages and denote their corresponding sends and deliveries as s;, sj,
d;, and d;. For messages i and j with the same destination, if s; - s;, then d; - d;.

[D] ’ THE OHIO STATE UNIVERSITY
P COLLEGE OF ENGINEERING

Background

Causally Ordered Unicast Algorithms

* When messages arrive out of order, they are buffered (i.e. received) until they can be
safely delivered

D ’ THE OHIO STATE UNIVERSITY
P COLLEGE OF ENGINEERING

Background

Causally Ordered Unicast Algorithms

* To enforce causal ordering, messages are augmented with a matrix of the entire
history of messages

* This information is propagated to all nodes through other messages

p q ro s

(m, matrix) p 0 1 4 1

ghassent2 7 1 1 0 4

messages to p
¢ s | 1 2 3 0

; THE OHIO STATE UNIVERSITY

® COLLEGE OF ENGINEERING

System Model

Asynchronous System

 No bounds on message delays. i.e., no way to distinguish between a
“slow” message and a message that was never sent

FIFO Channels

* Assume a set of FIFO channels connecting each process to every
other process

THE OHIO STATE UNIVERSITY
) COLLEGE OF ENGINEERING

Algorithm Intuition

* Minicast is defined here as a small (O(1)) broadcast message
e j.e. destination and message number
* Information is sent directly to every other process, not
propagated
e Only a vector is required (rather than a matrix) to maintain
causal ordering

(m, vector)

N\

; N\
\

QT

' THE OHIO STATE UNIVERSITY
= COLLEGE OF ENGINEERING

Algorithm — Data Structures
deliveredMCs

* Number of minicasts delivered from every other process

p.deliveredMCs

=
~
AN
\

THE OHIO STATE UNIVERSITY
COLLEGE OF ENGINEERING

(O I I U I U I B O R B O B R S (SN

Algorithm — Data Structures

receivedUnicasts
e Unicast messages that have been received but not yet delivered

delivered

M
O1E].

e

@I

p.receivedUnicasts p

not delivered

CICICICICOIN

i THE OHIO STATE UNIVERSITY
&P COLLEGE OF ENGINEERING

Algorithm — Data Structures

receivedMessages

* Queues of minicast and unicast messages merged together to preserve order

p.receivedUnicasts p.receivedMessages p.deliveredMCs
p p | 1] 2] 3] 4 / not delivered p | 4

a | @|@]®] «[1|@]0]4]6 . q | 4

r | & rl1(2|3|4a|s5]®]|7 r | 5

s @ = @ 2 I delivered 2 2

t | 3 tl12|@®fa] / | t | 3

u | @ | @ ul1|@|3|4|5]|6|@ | u | 7

Y @ @ Y @ @ 3 v 3

' THE OHIO STATE UNIVERSITY
= COLLEGE OF ENGINEERING

Algorithm

Message Send
5. send message m to process q —> p.deliveredMCs
6: Send((m, deliveredMC's)) to g
7. Broadcast((q, delivered M C's[p])) P >
8: deliveredMCs[p| += 1 q 4
r 5
m, p.deliveredMCs)
R s 2
q t 3
r u 7
S \V} 3
t

THE OHIO STATE UNIVERSITY
) COLLEGE OF ENGINEERING

Algorithm

Unicast Arrives

9: (m, MC's) arrives from process ¢ —> p.receivedUnicasts

10: receivedUnicasts|q|.enqueue((m, MC's))

@1l®

.
o)

OOWEEE

THE OHIO STATE UNIVERSITY
COLLEGE OF ENGINEERING

Algorithm

Minicast Arrives
11: (r,msgNum) arrives from process ¢ —

12 receivedMessages|q|.enquewe({r, msgNum))

COLLEGE OF ENGINEERING

THE OHIO STATE UNIVERSITY

p.receivedMessages

ol®

1
1
1
s | @D
1
1
©

2
@
2
2
2
@
@

Algorithm

Order Unicast in receivedMessages

13: receivedM essages|q|. front = (p, msgNum)
14: A receivedUnicasts[q] # € —

15: next < receivedUnicasts|q|.dequeue()

16: if next.MCslq] = msgNum then

1% receivedM essages|q|.replace F'ront(next)
18: end if

|
a (@G

p.receivedUnicasts

THE OHIO STATE UNIVERSITY
COLLEGE OF ENGINEERING

p.receivedMessages

|

q | 1|Q®@ 4|@6

r| 1|2 4 SXG 7
S 1 2

t | 1] 2

u | 1|2 516 7|8
v 1 2

Algorithm

Unicast is Delivered
19: receivedMessages|q]. front = (m, MC's) qgq. deliveredMCs :
20: N MC's Sq deliveredMCs — at t|me of Send p‘ deleePedMCS
21: next < receivedMessages|q].dequeue()
22: Deliver(next) p 4
23: deliveredM C's|q| + next.MC's[q] ‘ -
L q
p.receivedMessages
1 2 3 4 ' >
p
N
a |1 @346 —q .
r 1 2 3 4 5
o IE
s | D] 2 I , e
t | 12|03
[@] 3|25 s Dl®
v @ @ 3 @ is delivered

THE OHIO STATE UNIVERSITY
) COLLEGE OF ENGINEERING

Algorithm

Minicast is Delivered

24: receivedM essages|q|.front = (r,msgNum)

ol®

25: AT £ p —> p.receivedMessages
26: receivedM essages|q|.dequeue()
27: deliveredMC's|q| < msgNum P 1 2 3

a |1 1®|G

r 1 2 3

S @ 2 I

t |12 |

u | 1|@] 3

v @ @ 3

THE OHIO STATE UNIVERSITY
$ COLLEGE OF ENGINEERING

Proof Intuition

1. Safety

Theorem 1. For sends s; and s; with the same destination, if s; — s;, then d; — d;. That
IS, delivery events are causally ordered.

Lemma 2. For events e; and e;, if e; — e;, then deliveredMCs(e;) <
deliveredMCs(e;)

112(3(4, < (13|34

' THE OHIO STATE UNIVERSITY
= COLLEGE OF ENGINEERING

Proof Intuition

2. Liveness

Theorem 2. Every message must eventually be delivered.

There must exist at least one global minimal message m such that all sends
that happened before s,,, have been delivered. We show that once this
message is received, it is eventually delivered.

We use induction to show that every message must eventually be the minimal
message and thus must eventually be delivered.

i THE OHIO STATE UNIVERSITY
&P COLLEGE OF ENGINEERING

Results

* Asynchronous causal unicast using only O(n)
space in overhead compared to O(n?) previously

ﬁ ﬁ

» o) o-:l.o-b -

THE OHIO STATE UNIVERSITY
COLLEGE OF ENGINEERING

Byzantine Tolerant Asynchronous Causal Unicast

D THE OHIO STATE UNIVERSITY
[P COLLEGE OF ENGINEERING

Background

Byzantine Reliable Broadcast

 piscorrect: all correct processes accept and agree on the value
of the message

e pis faulty: either all correct processes accept and agree on the
same value of the message or none of them accept the message

p

q
r
S
t

1 THE OHIO STATE UNIVERSITY
$ COLLEGE OF ENGINEERING

Background

Bracha’s Byzantine Reliable Broadcast

 Send initial, echo, and ready messages
* When a process receives enough ready messages, it accepts the message

 All other correct processes are bound to accept the message, regardless of
whether they received an initial message

¢ L R QT

1 THE OHIO STATE UNIVERSITY

® COLLEGE OF ENGINEERING

Algorithm

w0 b

Message Send
I:

send message m to process ¢ —

signature < Send_MPLayer(q, (m, deliveredMC's))
BCCH_Broadcast((q, signature, delivered M Cs|[pl))
delivered M C's|p] += 1

p
q

r
S

t

Message Passifn_g Layer

? \:ignatur; (m, U@CtOT)

©

p.deliveredMCs

wiN|lw ||

(destination, signature, message#)

N\

N\

Arrival of a minicast means
a unicast message must

have been sent because of
the cryptographic signature

THE OHIO STATE UNIVERSITY

COLLEGE OF ENGINEERING

Algorithm

Minicast Arrives
5: (r, signature, msgNwum) arrives from process ¢
6: N Verify(q.r. signature) —

7. receivedMessages|ql.enqueue({r, msgNum))

p
Minicasts are verified based on a q
cryptographic signature, so only .
valid minicasts are accepted

S

t

THE OHIO STATE UNIVERSITY
COLLEGE OF ENGINEERING

N\
\

Byzantine

Tolerant Proof Intuition

1. A byzantine node could send a minicast without a unicast

Arrival of minicast means a unicast message must have been
sent because of the cryptographic signature

2. A byzantine node could send a unicast without a minicast

The unicast is thrown away once another message arrives. No
other nodes received a minicast, so they are not impacted.

3. The minicast is not sent to all processes

BCCH guarantees every process accepts/rejects the message
and agrees on the content

THE OHIO STATE UNIVERSITY

COLLEGE OF ENGINEERING

Results
* First algorithm to implement byzantine-tolerant
asynchronous causal unicast
* Requires O(nlogn) overhead space
* Requires additional latency

.
’"x
N\

COLLEGE OF ENGINEERING

Questions

Laine Rumreich rumreich. l(@osu.edu
Paul Sivilotti paolo(@cse.ohio-state.edu

D | THE OHIO STATE UNIVERSITY
P COLLEGE OF ENGINEERING

