
Using Minicasts for
Efficient Asynchronous
Causal Unicast and
Byzantine Tolerance

Laine Rumreich and Dr. Paul Sivilotti

PDPTA 2024

Overview

1. Efficient asynchronous causal unicast

2. Byzantine-tolerant asynchronous causal unicast

Efficient Asynchronous Causal Unicast

Background

Causal Message Ordering
Let 𝑖 and 𝑗 be two messages and denote their corresponding sends and deliveries as 𝑠௜, 𝑠௝,
𝑑௜, and 𝑑௝. For messages 𝒊 and 𝒋 with the same destination, if 𝒔𝒊 → 𝒔𝒋, then 𝒅𝒊 → 𝒅𝒋.

𝑞

𝑝

𝑟

𝑠

𝑡

𝑠௜

𝑠௝

𝑑௝ 𝑑௜

Background

Causally Ordered Unicast Algorithms
• When messages arrive out of order, they are buffered (i.e. received) until they can be

safely delivered

𝑞

𝑝

𝑟

𝑠

𝑡

𝑠௜

𝑠௝

𝑑௝ 𝑑௜

Background

Causally Ordered Unicast Algorithms
• To enforce causal ordering, messages are augmented with a matrix of the entire

history of messages
• This information is propagated to all nodes through other messages

1410

2202

4011

0321

𝑝

𝑝

𝑞

𝑞

𝑟

𝑟

𝑠

𝑠

𝑞 has sent 2
messages to 𝑝

𝑞

𝑝

𝑟

𝑠

𝑡

⟨𝑚,𝑚𝑎𝑡𝑟𝑖𝑥⟩

System Model

Asynchronous System
• No bounds on message delays. i.e., no way to distinguish between a

“slow” message and a message that was never sent

FIFO Channels
• Assume a set of FIFO channels connecting each process to every

other process

Algorithm Intuition

• Minicast is defined here as a small (O()) broadcast message
• i.e. destination and message number

• Information is sent directly to every other process, not
propagated

• Only a vector is required (rather than a matrix) to maintain
causal ordering

𝑞

𝑝

𝑟

𝑠

𝑡

⟨𝑚, 𝑣𝑒𝑐𝑡𝑜𝑟⟩

Algorithm – Data Structures

deliveredMCs
• Number of minicasts delivered from every other process

p.deliveredMCs 4p

4q

5r

2s

3t

7u

3v

𝑞

𝑝

𝑟

𝑠

𝑡

Algorithm – Data Structures

receivedUnicasts
• Unicast messages that have been received but not yet delivered

p.receivedUnicasts p

532q

6r

1s

3t

872u

21v

not delivered

delivered

Algorithm – Data Structures

receivedMessages
• Queues of minicast and unicast messages merged together to preserve order

p.receivedMessages

4321p

54321q

7654321r

21s

4321t

87654321u

321v

p.deliveredMCs

4p

4q

5r

2s

3t

7u

3v

not delivered

delivered

p.receivedUnicasts

p

532q

6r

1s

3t

872u

21v

Algorithm

p.deliveredMCs

4p

4q

5r

2s

3t

7u

3v

𝑞

𝑝

𝑟

𝑠

𝑡

5

⟨𝑚, 𝑝. 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑀𝐶𝑠⟩

⟨𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛,𝑚𝑒𝑠𝑠𝑎𝑔𝑒#⟩

Algorithm

p.receivedUnicasts

𝑞

𝑝

𝑟

𝑠

𝑡

p

32q

6r

1s

3t

872u

21v

5

Algorithm

p.receivedMessages

𝑞

𝑝

𝑟

𝑠

𝑡

6

4321p

54321q

7654321r

21s

4321t

87654321u

321v

Algorithm

654321q

7654321r

21s

4321t

87654321u

321v

p.receivedUnicasts

532q 5

p.receivedMessages

Algorithm

p.receivedMessages

4p

4q

5r

2s

3t

7u

3v

4321p

654321q

7654321r

21s

4321t

87654321u

321v

p.deliveredMCs

3p

5q

5r

1s

3t

6u

3v

5 is delivered

4321p

654321q

7654321r

21s

4321t

87654321u

321v

q.deliveredMCs
at time of send

4p

5q

5r

2s

3t

7u

3v

Algorithm

p.receivedMessages

4321p

654321q

7654321r

21s

4321t

87654321u

321v

4321p

654321q

7654321r

21s

4321t

87654321u

321v

Proof Intuition

1. Safety

Lemma 2. For events 𝑒௜ and 𝑒௝, if 𝑒௜ → 𝑒௝, then deliveredMCs(𝑒௜) <
deliveredMCs(𝑒௝)

Theorem 1. For sends 𝑠௜ and 𝑠௝ with the same destination, if 𝑠௜ → 𝑠௝, then 𝑑௜ → 𝑑௝. That
is, delivery events are causally ordered.

4321 4331<

Proof Intuition

2. Liveness

There must exist at least one global minimal message 𝑚 such that all sends
that happened before 𝑠௠ have been delivered. We show that once this
message is received, it is eventually delivered.

We use induction to show that every message must eventually be the minimal
message and thus must eventually be delivered.

Theorem 2. Every message must eventually be delivered.

Results

• Asynchronous causal unicast using only O()
space in overhead compared to O() previously

Byzantine Tolerant Asynchronous Causal Unicast

Background

Byzantine Reliable Broadcast
• p is correct: all correct processes accept and agree on the value

of the message
• p is faulty: either all correct processes accept and agree on the

same value of the message or none of them accept the message

Background

Bracha’s Byzantine Reliable Broadcast
• Send initial, echo, and ready messages
• When a process receives enough ready messages, it accepts the message
• All other correct processes are bound to accept the message, regardless of

whether they received an initial message

Algorithm

𝑞

𝑝

𝑟

𝑠

𝑡

Message Passing Layer

⟨𝑚, 𝑣𝑒𝑐𝑡𝑜𝑟⟩

Arrival of a minicast means
a unicast message must
have been sent because of
the cryptographic signature

𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒

⟨𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒,𝑚𝑒𝑠𝑠𝑎𝑔𝑒#⟩

p.deliveredMCs 4p

4q

5r

2s

3t

7u

3v

Algorithm

Minicasts are verified based on a
cryptographic signature, so only
valid minicasts are accepted

𝑞

𝑝

𝑟

𝑠

𝑡

Byzantine Tolerant Proof Intuition

Arrival of minicast means a unicast message must have been
sent because of the cryptographic signature

1. A byzantine node could send a minicast without a unicast

2. A byzantine node could send a unicast without a minicast

3. The minicast is not sent to all processes

The unicast is thrown away once another message arrives. No
other nodes received a minicast, so they are not impacted.

BCCH guarantees every process accepts/rejects the message
and agrees on the content

Results

• First algorithm to implement byzantine-tolerant
asynchronous causal unicast

• Requires O() overhead space
• Requires additional latency

𝑞

𝑝

𝑟

𝑠

𝑡

Laine Rumreich rumreich.1@osu.edu

Paul Sivilotti paolo@cse.ohio-state.edu

Questions

