
A Paradigm for Component-Based Software Development
in a Distributed Environment

Ayesha Mascarenhas
Dept. of Computer and Information Science

The Ohio State University
Columbus, Ohio, USA
Tel Ph:614-292-8234

mascaren@cis.ohio-state.edu

Paolo A.G. Sivilotti
Dept. of Computer and Information Science

The Ohio State University
Columbus, Ohio, USA
Tel Ph:614-292-5835

paolo@cis.ohio-state.edu

ABSTRACT
The component-based construction of complex software sys-
tems requires reasoning about the behavior of a system based
on the behaviors of the individual components. Existential
and universal properties are examples of component proper-
ties that enjoy particularly simple and elegant theories un-
der composition. In this paper, we focus on the practical
issues involved in the development of distributed systems
from components exhibiting existential and universal prop-
erties. We explore how this compositional paradigm can be
applied in current industrial distributed component frame-
works, in particular CORBA and .NET.

Keywords
Distributed Components, Specification, CORBA, .NET

1. INTRODUCTION
Compositional development allows us to construct large

software systems from smaller, simpler components. This
is exciting from a software development standpoint because
it promises the reusability of developed components[10, 6].
Many techniques that promote component reuse focus on
this particular aspect of reuse—that is, on implementation
reuse. Simple inheritance in object-oriented programming
languages is an example of this kind of reuse. In addition
to implementation reuse, however, a robust compositional
methodology also requires reasoning reuse.
When a component is built, the developers spend time

and effort convincing themselves that the implementation
does what it is supposed to do. This process may involve
combinations of testing, code walk-throughs, the adoption
of various coding standards, and some degree of abstract
reasoning, either formally or informally. Once the compo-
nent is deployed, clients of this implementation should not
have to start from scratch in reasoning about the aggre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
PDPTA 2002, Las Vegas, Nevada USA
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

gate behavior of this component in the larger system. This
requires that component descriptions be complete and pre-
cise. Mechanisms for achieving this precision, as well as the
proper balance between completeness and abstraction, have
been the topics of considerable research in software engi-
neering.
Completeness and precision, however, are not sufficient for

enabling reasoning reuse. The properties used in the descrip-
tion of component behavior must also lend themselves nicely
to composition. That is, care must be given to describe com-
ponents in such a way that compositional reasoning is possi-
ble. Recently, a new taxonomy of compositional properties
has been introduced [3, 2]. This taxonomy identifies two
fundamental classes of properties, universal and existential
properties, that enjoy particularly simple compositional the-
ories. Existential properties are those that hold on a system
whenever the system contains at least one component that
has that property. Universal properties are those that hold
on a system whenever all the system components have that
property.
As an example of an existential property, consider a dis-

tributed component that broadcasts streaming video, gen-
erating at least 1Mb of continuous network traffic. Regard-
less of how this component is used in a larger system, that
larger system will also generate at least 1Mb of continuous
network traffic. As an example of a universal property, con-
sider a system that uses token-passing to manage access to
a shared critical resource. If every component guarantees it
neither creates nor destroys tokens, the number of tokens in
the system as a whole remains constant.
Not all properties of interest, however, can be expressed

directly as a combination of existential and universal prop-
erties. To address this concern, property transformers based
on weakest/strongest existential/universal properties can be
used to transform properties that do not exhibit this nice
compositional flavor into properties that do. For example, a
strongest existential transformer for some property P , gives
the strongest property that is weaker than P and that is
also existential. If we know these strongest existential prop-
erties that a component exhibits, we also know something
about any system that contains this component, and we can
reason about the system as a whole, based on the properties
of that one component.
In this paper, we examine the practical implications of

these compositional properties on software development in a
distributed environment. We describe how a bottom-up sys-

tem integration strategy based on existential properties and
on property transformers can be realized in two industrial-
strength distributed component technologies: CORBA [12]
and .NET [14].

2. ILLUSTRATIVE EXAMPLE
Consider the design and construction of a distributed auc-

tioning system. One basic system property is that once the
auction for an item has started, the price of the item never
decreases, unless the auction is cancelled. Informally, the
auction not being cancelled implies the item price never de-
creases. One way to achieve this system property is to iden-
tify and use a component that maintains a local integer and
increases this integer based on received bids. Notice that
the desired property is a system property, not a component
property. What is needed, therefore, is a system-level guar-
antee that the current auction price does not decrease. This
system-level guarantee follows from the observation that the
monotonicity of a local variable can be phrased as an ex-
istential property. That is, the counter component would
guarantee that it does not decrease its count unless the en-
vironment calls its Clear() operation.
Now this same component might be reused in another

system to count, say, the number of visitors to a web site.
The existential property of the counter guarantees the same
monotonic behavior in both systems. Notice that an ex-
istential property must hold regardless of the environment
in which the component is placed. While this requirement
might seem to be a significant restriction, in practice re-
quirements on the environment can be incorporated into the
property itself. In the counter example, the existential prop-
erty would, informally, be “if the Clear() method is never
called, the count is non-decreasing”. In this way, existential
properties can be both highly expressive (capturing behavior
that is conditional on the environment) and easily composed
(capturing behavior that is unilaterally guaranteed by the
component, regardless of environment).

3. BASIS FOR THE PARADIGM
Any paradigm for the compositional development of dis-

tributed systems must address certain fundamental issues.
In this section, we examine each issue in turn, with partic-
ular attention to how the use of existential and universal
properties influences design decisions for that issue.
Any compositional development paradigm will require:

• Amethod for describing component behaviors in terms
of compositional properties.

• Amethod for publishing and searching component spec-
ifications and sharing component implementations.

• Tool support for high-confidence component integra-
tion.

3.1 Component Descriptions
In most component-based enterprise frameworks, such as

CORBA and Enterprise Java Beans, a component descrip-
tion consists simply of the component’s syntactic interface;
that is, a list of method signatures implemented by the com-
ponent. The inadequacies of this approach are well known
and there have been several attempts to extend such inter-
face descriptions with formal behavioral descriptions [16, 7].

Interface
Inc();
Clear();

Abstract State
integer: count

Safety
initially.(count = 0)
(∀ j, k :: #Inc = j ∧ count = l

next #Inc = j + 1 ⇒ count = l + 1)
(∀ j, k :: #Clear = j

next #Clear = j + 1 ⇒ count = 0)
(∀ j, k, l :: #Inc = j ∧ #Clear = k ∧ count = l

next (#Inc = j ∧ #Clear = k) ⇒ count = l)
Existential

invariant.(#Clear = 0) guarantees
(∀ k :: ((count = k) next (count ≥ k)))

Informal Specification:
Inc() increases count by some positive amount
Clear() sets count to 0

Figure 1: Description of Counter Component

Formal specifications can be expressed in terms of pre and
post conditions following a “design-by-contract” approach
[11]. For distributed, reactive programs, it is more appro-
priate to use safety and liveness properties [8, 15]. Inter-
estingly, one of the basic liveness operators, transient, is
existential, while some of the basic safety operators, next

and stable , are universal.
Many other properties, however, are neither existential

nor universal. In general, then, a component description
will include both (i) a specification of the actual component
behavior, and (ii) the strongest and weakest compositional
properties (existential or universal) associated with this be-
havior. In this way, system engineers can select and in-
tegrate existing components based on their compositional
properties. A complete component specification will there-
fore consist of: (i) a traditional interface with method sig-
natures, (ii) a declaration of abstract state (iii) a formal
behavioral specification, (iv) compositional properties (exis-
tential and universal), and (v) an informal description.
Figure 1 contains the description for the simple counter

component introduced earlier. The formal specification is
in terms of safety and liveness properties. The abstract
variable #Inc and #Clear represent the number of times
these methods have been invoked. The first two safety prop-
erties describe the effect of calling the Inc() and Clear()

methods. The last safety property indicates that the com-
ponent does not spontaneously change the value of count.
In the existential part of the component description, the

existential properties of this component are given. In this
case, the guarantees property states that in any system
where Clear() is never invoked, the count is nondecreasing.
If this component had any strongest existential or weakest
existential properties, they would also be given in this sec-
tion.

3.2 Publishing and Searching Speci£cations
In order to support reuse, components and their associ-

ated descriptions of behavior must be easy to find and iden-
tify. Component providers must be able to advertise or pub-
lish these descriptions and component consumers must be
able to browse or search these advertisements. In the case
of distributed components, all industrial middleware tech-
nologies already support some form of publication service

or catalogue for syntactic interfaces. These services or cata-
logues can be naturally extended to include the augmented
interfaces described in the previous section.
The CORBA standard provides the Trading Service as

a common interface for component consumers to identify
registered objects based on various interface criteria. We
define a new service, with a backward compatible publica-
tion format, to include compositional properties. Backward
compatibility is important since we do not wish to man-
date that all CORBA component consumers subscribe to
an enriched trading service. Similarly, the .NET framework
uses the UDDI [1] registry model for publishing information.
The information provided by every component must follow a
standard format. The UDDI framework allows us to define
the publishing format as a unique tModel. Every compo-
nent that needs to publish its compositional behavior, must
use this tModel data structure to indicate compliance with
this publishing format.
An important design feature of any publication (or search-

ing) service is that it be flexible. It should accomodate
behavioral descriptions of various degrees of completeness.
Descriptions (and searches) with more information should
be correspondingly more precise and high-confidence. How-
ever, descriptions with little behavioral information should
also be allowed and seamlessly incorporated under a sin-
gle paradigm of component identification and binding. The
amount of information in a component’s behavioral descrip-
tion will vary, in part, based on the effort of the interface
provider and also based, in part, on the nature of the com-
ponent itself. For example, the counter component from
Figure 1 does not have any liveness properties.

3.3 Tool Support for Integration
In a compositional development environment, ideally the

major development work should lie in decomposing system
requirements, and locating components that can provide
these system properties. A development framework should
facilitate the task of reading accompanying component spec-
ifications. Moreover, an integrated development environ-
ment should seamlessly obtain a component’s specification,
display it to the developer, and calculate the result of the
composition of different components (based on their accom-
panying compositional specifications). For example, on ob-
taining the counter component’s specification, the tool would
highlight that any system containing this component will
have its existential properties.
Another useful task to automate is checking whether two

given specifications are a match. Searches based on match-
ing specifications are difficult, because a match must be
made between a property as it is specified by the client and
the specification as it is provided by the implementer. For
example, the counter component is specified in terms of a
single integer variable in its abstract state. However, when
searching for a monotonic counter component, it is unlikely
that the client will provide a syntactically matching spec-
ification. The client’s target specification will reflect the
domain of interest for the client’s system. Model checkers
can be used to check for matches in certain cases [4]. While
it would be useful to be able to automate the decomposition
of a given system specification into smaller specifications, or
to calculate the result of combining specifications, or to de-
termine whether a given property is existential or universal,
these tasks are, in general, incomputable.

interface counter {
void Inc()
void Clear()
#pragma state short count
#pragma spec initially.(count == 0)
#pragma spec (Forall j,k: #Inc == j && count == l

next #Inc == j+1 ==> count = l+1)
#pragma spec (Forall j,k: #Clear == j

next #Clear == j+1 ==> count == 0)
#pragma spec (Forall j,k,l:

#Inc == j && #Clear == k && count == l
next (#Inc == j && #Clear == k) ==> count == l)

#pragma Existential (invariant.(#Clear==0)
guarantees (Forall k: count==k next count >= k))

}

Figure 2: cidl Description of Counter Component

4. APPLICATION OF OUR PARADIGM TO
EXISTING FRAMEWORKS

We examined both CORBA and .NET to determine the
changes and challenges involved in constructing systems com-
positionally following our paradigm.

4.1 CORBA
CORBA is used to build large heterogeneous systems that

use the services of distributed components. These distributed
objects can be viewed as components and they provide ser-
vices based on calls made to the methods they implement.
In this model, composition is simply the acquisition of an
object reference by another object. This object reference
permits method invocations and hence interaction with a
component’s environment. (Here we ignore the Event Ser-
vice, which provides event streams for interacting with the
environment.)
In order to allow developers to specify their components,

we developed, in earlier work, a certificate-based extension
to the CORBA IDL, cidl [16, 7]. Ordinary IDL captures in-
terface names and method signatures. The CIDL extension
allows the inclusion of abstract state and behavioral prop-
erties in a component’s IDL. The extension makes use of
pragmas to add information to the specification, in this way
guaranteeing its backward compatibility with ordinary IDL.
We further extend CIDL to include existential and universal
properties. For example, Figure 2 shows the CIDL descrip-
tion for the counter component. This allows the component
to store its compositional description in its idl interface it-
self, which is where the description belongs.
The CORBA Naming Service allows clients to retrieve

references to components based on interface name. By con-
trast, the CORBA Trading Service allows a richer set of
queries based on method signatures and simple component
properties. We leverage the discipline of publishing com-
ponent interfaces with the Trading Service to support the
publication of compositional behavioral descriptions as well.
To this end, we define a new CORBA service type, the
ComponentSpec service. Every CORBA service type has a
number of properties. The property definitions for our new
ComponentSpec service type are given in Figure 3.
In order for a trader to be able to advertise service offer-

ings from components meeting this ComponentSpec service,
the trader needs to have added this new service type to its
type repository. The trader must also provide the function-
ality to allow component providers to create service offerings

PropertyName PropertyType PropertyMode

AbstractState CORBA::tcstring Mandatory
Interface CORBA::tcstring Mandatory
Safety CORBA::tcstring Mandatory
Liveness CORBA::tcstring Mandatory
Exist CORBA::tcstring Normal
Univ CORBA::tcstring Normal
Informal CORBA::tcstring Normal

Figure 3: Properties for ComponentSpec Service

for this new type, allow client applications to search for ser-
vice offers, perform imports, etc.
Now, any component that is developed to support these

kind of compositional specifications, needs to export a ser-
vice offer of ComponentSpec service type to the trader with
all the fields filled in appropriately. The first four properties
of the service must be provided, while the rest are optional.

4.2 .NET
The .NET framework is Microsoft’s framework for build-

ing and deploying XML-based web-services. In general, web
service providers deploy services that can be used by dis-
tributed client applications. At the time a web-service is
being used by a client application, it fits our model of a dis-
tributed component that is dynamically composed with the
client application. Thus, every web service provider must
provide all the information needed by clients in order to
reason about the behavior of this web service in their client
application. These web-services will use the UDDI business
registry to publish their interfaces and allow searches for
services. Thus, the UDDI registry is the ideal place for our
component specification to reside, as it will contain all the
information required by a client application to understand
how the service will interact with the rest of the applica-
tion. A developer looking for some component to satisfy
a system specification will search the UDDI registry for a
service specification that matches or can provide the system
requirement.
UDDI uses a data structure called the “tModel” to de-

fine industry standards. In order to standardize our com-
ponent description format, we need to define a new tModel,
ComponentSpec Service, that will be used by web services
that wish to indicate compliance with this compositional
specification format. Figure 4 is our ComponentSpec ser-
vice tModel. This tModel will be completely described in
a WSDL [5] document cs.wsdl that describes the service
interface and protocol bindings for obtaining the compo-
nent specifications. WSDL is an XML based language, that
allows us to describe this interface in a uniform manner.
Figure 5 illustrates the cs.wsdl WSDL description of our
ComponentSpec service.
The UDDI businessService data structure is used to de-

scribe the services provided by a web service and the loca-
tion where the web service can be accessed. Any web service
provider (or component provider in our case) who wants to
provide services that conform to our compositional specifi-
cation format will use this ComponentSpec service tModel in
the UDDI businessService data structure used to describe
access to their service. In addition, the businessService will
provide the accesspoint or location of the service. So, for
example, the provider for the counter component will use

<tModel authorizedName="..." ...>
<name> ComponentSpec Service </name>
<description xml:lang="en">

WSDL Description of a ComponentSpec
service interface

</description>
<overviewDoc>

...
<overviewURL>

http://Component-definitions/cs.wsdl
</overviewURL>

...
<keyedReference tModelkey="uuid:C12345..." ...

keyvalue="wsdlSpec"/>
</tModel>

Figure 4: tModel for the ComponentSpec Service

<? xml version="1.0">
...
<definitions name="ComponentSpec"...

xmlns : xsd1=".../componentspec.xsd"...>
<types>

<schema
targetNamespace=".../componentspec.xsd"
Service xmlns=".../XMLSchema">
<element name="AbstractState">

<complexType>
<all>

<element name="abstractState"
type="string"/>

</all>
</complexType>

</element>
<element name="FormalSpecification">

<complexType>
<all>

<element name="formalSpec"
type="string"/>

</all>
</complexType>

</element>
...

</schema>
</types>
...
<message name="GetAbstractState">

<part name="body"
element="xsd1:AbstractState"/>

</message>
...
<message name="GetExistentialProperties">

<part name="body"
element="xsd1:ExistentialProperty"/>

</message>
</definitions>

Figure 5: WSDL Description for the Compo-

nentSpec Service

<businessService businessKey="..." serviceKey="...">
<name> CounterService </name>

...
<bindingTemplates>
<bindingTemplate>

<accessPoint urlType="http">
"http://www.sample.com/counter"

</accessPoint>
<tModelInstanceDetails>

<tModelInstanceInfo tModelkey=
"ComponentSpecification key">

</tModelInstanceInfo>
</tModelInstanceDetails>

</bindingTemplate>
</bindingTemplates>

</businessService>

Figure 6: businessService structure for counter com-

ponent

our ComponentSpec service as shown in Figure 6.
Thus, incorporating the compositional behavior of a com-

ponent into its specification and make use of it in the .NET
framework is just a matter of conforming to one extra tModel.

5. CONCLUSION
In his paper on composition [9], Lamport states that if a

component is likely to be used in multiple systems, an open
system specification needs to be written for it. He goes on
to say that although the composition of open system speci-
fications is an attractive idea, it is unlikely that the think-
ing will change within the development community in the
next 15 years so that engineers would make the extra effort
of proving open system properties on the components they
build. However, with the advent of web-services and the
UDDI registry, designed with the intention of allowing ser-
vice providers to provide services dynamically to clients, it
is only natural that a description of any service should con-
tain information about how the service will interact with the
client application. Thus, it has become imperative for de-
velopers to provide this compositional information in order
to increase the likelihood of the component being used.
The component description we defined earlier provides a

systematic way for developers to provide what amounts to
an open system specification. These compositional spec-
ifications can be incorporated into the standard interface
descriptions of both CORBA and .NET in a natural man-
ner. If component-based system development is to become
the norm, it is necessary that component developers provide
component specifications that are complete and informative
enough for clients to be able to reason about the interac-
tion of these components in their systems. The paradigm
we discuss in this paper allows us to reap the full benefit of
compositional development.

6. REFERENCES
[1] Uddi executive white paper. available at
www.uddi.org/pubs/UDDI Executive White Paper.pdf.

[2] Charpentier, M., and Chandy, K. M. Reasoning
about composition using property transformers and
their conjugates. In IFIP TCS (2000), pp. 580–595.

[3] Charpentier, M., and Chandy, K. M. Theorems
about composition. In Mathematics of Program
Construction (2000), pp. 167–186.

[4] Clarke, E. M., Grumberg, O., and Peled, D. A.

Model Checking. The MIT Press, 1999.

[5] Curbera, F., Ehnebuske, D., and Rogers, D.

Using wsdl in a uddi registry 1.05. available at
http://www.uddi.org/pubs/wsdlbestpractices-V1.05-
Open-20010625.pdf.

[6] Hopkins, J. Component primer. Communications of
the ACM 43, 10 (October 2000), 27–30.

[7] Krishnamurthy, P., and Sivilotti, P. A. G. The
specification and testing of quantified progress
properties in distributed systems. In Proceedings of
the 23rd International Conference on Software
Engineering (ICSE) (Toronto, Canada, May 2001),
IEEE and ACM SIGSOFT.

[8] Lamport, L. Proving the correctness of multiprocess
programs. IEEE Transactions on Software
Engineering SE-3, 2 (March 1977), 125–143.

[9] Lamport, L. Composition: A way to make proofs
harder. In International Symposium on
Compositionality – The Significant Difference
(September 1997).

[10] Larsen, G. Component based enterprise frameworks.
Communications of the ACM 43, 10 (October 2000),
25–26.

[11] Meyer, B. Object-Oriented Software Construction,
second ed. Prentice-Hall, Upper Saddle River, New
Jersey 07458, 1997.

[12] Object Management Group. The Common Object
Request Broker: Architecture and Specification,
February 2001. Revision 2.4.2.

[13] Pree, W. Component based software development-a
new paradigm in software engineering?
Springer-Verlag Software-Concepts and Tools, 18
(1997), 169–172.

[14] Richter, J. Microsoft .net framework delivers the
platform for and integrated service oriented web.

[15] Sivilotti, P. A. G. A Method for the Specification,
Composition, and Testing of Distributed Object
Systems. PhD thesis, California Institute of
Technology, 256-80 Caltech, Pasadena, California
91125, December 1997. Available as CS-TR-97-31.

[16] Sivilotti, P. A. G., and Giles, C. P. The
specification of distributed objects: Liveness and
locality. In Proceedings of CASCON ’99 (Toronto,
Ontario, Canada, December 1999), S. A. MacKay and
J. H. Johnson, Eds., pp. 150–160.

