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ABSTRACT
A snapshot algorithm gathers global state in a distributed
system. Co-ordinated snapshot algorithms, such as the
Chandy-Lamport algorithm, use control messages to en-
sure consistency of the gathered state. “Lazy snapshots”
represent a generalization of Chandy-Lamport in which
processes can delay recording local state and can antici-
pate or delay propagating control messages. In this paper,
we present a new taxonomy of the class of lazy snapshot al-
gorithms. This taxonomy precisely characterizes each vari-
ant within this class and forms a framework for a system-
atic investigation of the performance of each algorithmic
variant. Through simulation and analysis, we quantify the
tradeoff between flexibility and storage cost. We find that
eagerly sending markers before recording the local state al-
ways reduces the amount of storage required to save global
state. Furthermore, this approach allows processes modest
flexibility in deciding when to record the local state. Con-
versely, lazily recording the local state provides significant
flexibility but can increase the amount of storage needed.
In light of this tradeoff, we present a new hybrid algorithm
that blends these strengths.
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1 Introduction

The collection of global state is a problem of fundamen-
tal importance in asynchronous distributed systems. Since
processes do not share state, each is responsible for record-
ing an image of its own, local, state. A collection of local
images forms a valid snapshot if and only if it is consis-
tent: Every message recorded as having been received is
also recorded as having been sent [1]. Snapshots have a
variety of applications, including: stable predicate detec-
tion [7, 2], distributed debugging [4], and fault tolerance
through roll-back recovery [6].

The importance of this problem has led to the devel-
opment of many snapshot algorithms [3]. The algorithms
fall in two broad categories: coordinated and uncoordi-
nated. The former approach is conservative: Every image
is part of a valid snapshot. The latter approach is opti-

mistic: Processes decide independently when to take local
images and valid snapshots are later formed from the avail-
able images. While the former requires fewer images to be
recorded, the latter allows the processes more flexibility in
scheduling when to take these images.

In earlier work [8], the classic coordinated snapshot
algorithm of Chandy and Lamport [1] was generalized to
a class of algorithms termed “lazy snapshot algorithms”.
Laziness permits a process to delay its recording of the lo-
cal state without violating the conditions needed for guar-
anteeing that the resulting snapshot is valid. This previ-
ous work hypothesizes that laziness, while enjoying all the
benefits of coordinated strategies, might also have two ad-
ditional advantages: (i) lazy snapshots could include fewer
messages in transit, and (ii) lazy snapshots could afford
greater flexibility to processes in when to record their lo-
cal state. The former is a benefit in storage and the latter is
a benefit in flexibility.

In this paper, we quantify the extent of these benefits
for lazy snapshots. We form a taxonomy of the algorithm
variants that satisfy the lazy snapshot generalization. This
taxonomy is generated from two degrees of freedom: lazi-
ness in recording the local state, and laziness in sending
control messages. We systematically investigate the impact
of each of these degrees of freedom through a collection of
simulation studies.

Our results indicate that laziness does indeed provide
significant improvements in flexibility. These improve-
ments, however, may come at the cost of storage. The
extent to which laziness increases storage depends on the
topology and message traffic of the underlying computa-
tion. We describe a new, hybrid algorithm that blends
the advantages of both approaches to reduce storage costs
while maintaining some flexibility. In this hybrid algo-
rithm, processes dynamically decide how lazy to be, based
on locally observed message traffic.

2 Background

2.1 The System Model

A distributed system consists of a finite set of processes P
that communicate by message passing. Communication is



Marker-Sending Rule for a Process p . For each outgo-
ing channel C :
p sends one marker along C after p records its state and before
p sends further messages along the same channel.

Marker-Receiving Rule for a Process q . On receiving
a marker along a channel C :
if q has not recorded its state then

begin q records its state;
q records the state of C as the empty sequence

end
else q records the state of C as the sequence of messages

received along C after q ’s state was recorded and
before q received the marker along C .

Figure 1. Chandy-Lamport algorithm

point-to-point, asynchronous, FIFO, and failure-free. The
variables p and q are understood to range over P . The
channel from p to q is denoted Cpq .

The execution of a process is a sequence of events.
There are three kinds of events: local, send, and receive. A
message is said to be in transit when it has been sent by the
source process but has not been received by the destination
process. At any given moment, the state of a channel is the
set of messages that are in transit in that channel.

The global state of the system is defined as the union
of local states of processes and the states of the channels
(i.e., the messages in transit). A global state is consistent
when every message that is recorded as received in the lo-
cal state of the receiver has also been recorded as sent in
the local state of the sender. Consistent global states are
meaningful snapshots as they represent a system state that
may have occurred during the computation.

2.2 The Chandy-Lamport Algorithm

This algorithm is a coordinated snapshot algorithm where
markers are used as control messages to trigger the record-
ing of the local state by other processes. Since channels
are FIFO, markers serve to separate the messages that were
sent before a local snapshot (recorded sends) from those
that were sent after (unrecorded sends). By recording its
local state on the receipt of its first marker, a process guar-
antees that every message it records as received came from
a recorded send action, and hence the recorded global state
is consistent. The outline of the algorithm is presented in
Figure 1. [1]

2.3 Notation

We follow the notation used in the original presentation of
lazy snapshots [8]. A channel on which a marker has been
received is termed a dirty channel. The times at which
events related to recording local state occur are given by:

RSCpq' RLSp

USCpqRSCpq

USCpq'

RMCqp FSCpq

RD pCq'RM pCq'FR pCq'

RDCqp SMCpq

FS pCq'

Figure 2. Definitions of Events

RLSp : p records its local state.

USCpq
: p sends a message on channel Cpq after record-

ing the local state (the first “unrecorded send”).

RSCpq
: p sends a message on channel Cpq before

recording the local state (the last “recorded send”).

The times at which events related to marker propagation
occur are given by:

RMCpq
: q receives a marker on channel Cpq .

SMCpq
: p sends a marker on channel Cpq .

RDCpq
: q receives a message on a dirty channel Cpq .

FRCpq
: q receives the first message on channel Cpq af-

ter having received some marker (the “first receive”).

FSCpq
: p sends the first message on channel Cpq after

having received some marker (the “first send”).

These terms are illustrated in Figure 2, where the solid ver-
tical line indicates the recording of local state, solid arrows
are application messages, and dashed lines are marker mes-
sages.

From these definitions, it follows that:

(Max q :: RSCpq
) < RLSp

RLSp < (Min q :: USCpq
)

RMCpq
< RDCpq

FRCpq
≤ RDCpq

(Min q′ :: RMC
q′p

) < min(FSCpq
, FRCqp

) .

With this notation, the Chandy-Lamport algorithm
can be characterized by the following two inequalities:

E1. (∀ p :: RLSp ≤ (Min q :: RMCqp
) )

E2. (∀ p, q :: RLSp < SMCpq
< USCpq

) .

The first inequality controls when the local state is
recorded: The local state is recorded no later than the re-
ceipt of the first marker. Any process that records its state
before receiving the first marker is an initiator. The second
inequality controls when markers are sent: A marker is sent
on a channel after recording the local state and before the
first unrecorded send on that channel.



3 Lazy Snapshots

Lazy snapshots [8] are a generalization of the Chandy-
Lamport algorithm. They are motivated by the observa-
tion that requiring a process to record local state immedi-
ately when receiving a marker is too strict: The receiving
process only needs to guarantee that it does not record an
orphan message. Similarly, requiring a process to send a
marker only after recording local state (and before its first
unrecorded send) is also too strict: The sending process
only needs to guarantee that a marker is sent between the
last recorded send and the first unrecorded send.

Thus, the family of lazy snapshot algorithms are char-
acterized by the following pair of inequalities:

L1. (∀ p :: RLSp < (Min q :: RDCqp
) )

L2. (∀ p, q :: RSCpq
< SMCpq

< USCpq
) .

Since E1 and E2 are strictly stronger than L1 and L2,
lazy snapshots define a strictly larger family of algorithms.

4 A Taxonomy of Laziness

The inequalities L1 and L2 each control different dimen-
sions of laziness. The first defines the interval in which the
local state can be recorded, while the latter defines the inter-
val in which markers can be sent. A particular algorithm is
instantiated from this class by deciding when, within these
intervals, the events occur.

For recording local state, there are four natural divi-
sions within the interval L1. In increasing degree of lazi-
ness, a process p can record local state:

I: When the first marker is received.
RLSp ≤ (Min q :: RMCqp

)

II: Before the first send or receive.
RLSp < (Min q :: min (FSCpq

, FRCqp
) )

III: Before the first send or dirty receive.
RLSp < (Min q :: min (FSCpq

, RDCqp
) )

IV: Before the first dirty receive.
RLSp < (Min q :: RDCqp

)

For propagating markers, there are three natural divi-
sions within the interval L2. In increasing degree of lazi-
ness, a process p can send a marker:

A: When the first marker is received.
(∀ q :: SMCpq

= (Min q′ :: RMC
q′p

) )
∧ (∀ q :: RSCpq

< SMCpq
≤ RLSp )

B: When the local state is recorded.
(∀ q :: SMCpq

= RLSp )

C: Before the first unrecorded send.
(∀ q :: RLSp < SMCpq

< USCpq
)

A particular snapshot algorithm within this family is
instantiated by selecting a degree of laziness for recording
local state ( I – IV ) and a degree of laziness for sending
markers ( A – C ). Thus, the cross-product of these two
dimensions provides a taxonomy for this family of algo-
rithms. This taxonomy is summarized in Figure 3, where
each cell illustrates a characteristic execution for a particu-
lar variant.

It is important to note that the two dimensions are not
truly independent. The first dimension (when to record lo-
cal state) is defined only in terms of application messages
and the reception of markers. The second dimension (when
to send a marker), however, is defined relative to the first
(i.e., when local state is recorded). An example of this
interdependence is the equivalence of AI and BI . In
the former, markers are sent when the first marker is re-
ceived, while in the latter, markers are sent when local state
is recorded. For column I , however, these two times are
the same. Hence AI = BI (and we refer to this variant as
ABI ).

Another example of this interdependence is AIV .
This algorithm has maximum laziness in recording local
state: local state is recorded just before the first dirty re-
ceive. On the other hand, this algorithm has minimum lazi-
ness in propagating markers: a marker is sent on a channel
immediately after receiving the first marker and after the
last recorded send. These two requirements are inconsis-
tent in executions for which there is a send after receiv-
ing the first marker but before the first dirty receive (see
cell AIV in Figure 3.) This algorithm can not be imple-
mented without prescience since deciding whether or not
to propagate a marker immediately depends on what future
communication actions will occur. Absent this information
about the future, an implementation must either anticipate
recording local state (behaving like AIII ) or postponing
propagating markers (behaving like BIV ).

The proofs of correctness for algorithms within this
taxonomy can be found in [5].

5 Evaluation

We evaluate the performance of these algorithms with re-
spect to two metrics: storage and flexibility.

Storage measures the amount of space required to
store a gathered snapshot. We assume that, for a fixed num-
ber of processes, the amount of space required for local
state is constant. The storage metric, therefore, measures
only the space required to measure channel state—that is,
the number of messages in transit.

Flexibility measures the amount of independence af-
forded a process in deciding when to record local state.
Informally, the longer a process can defer recording lo-
cal state, the more flexibility it has. In order to compare
flexibility across different topologies and different appli-
cation message traffic patterns, we normalize the time the
process defers recording local state to the average time be-
tween send events for that process. Thus, a flexibility mea-



I
RLS when first marker is received

II
RLS before first send or receive

III
RLS before first send or dirty receive

IV
RLS before first dirty receive
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Figure 3. Lazy Snapshot Algorithm Variants

sure of f reflects that processes can expect to perform f
send operations between receiving the first marker and be-
ing obliged to record local state.

Our evaluation is empirical. We implement and simu-
late each algorithm variant1 using the Anylogic simulation
package [9]. Each simulation run consists of 30 processes
and a randomly generated (connected) topology of FIFO,
bidirectional channels. Each process p is associated with
a mean send interval, µp , and application message traf-
fic is generated on each of p ’s outgoing channels using a
negative exponential distribution, with mean µp . Message
delay is constant.

We characterize each simulation run with two pa-
rameters: connectivity (the total number of channels), and
message traffic density (the average number of messages
in transit per channel). For any one run, we evaluate all
the variants using the same underlying application message
traffic pattern.

5.1 Baseline: Chandy-Lamport

As a baseline performance measurement for algorithm vari-
ants within our topology, we examine the Chandy-Lamport
algorithm with eager propagation of markers (i.e., ABI ).
Since the flexibility of algorithms in column I is by defi-
nition 0, we measure only the storage cost. Figure 4 shows
the storage cost (messages recorded as in transit, per chan-
nel) as a function of message traffic density and connectiv-

1Algorithm AIV is unimplementable without prescience and so was
not included in the simulation study. Also, algorithms AI and BI are
equivalent, as discussed in Section 4, and so a single implementation was
used.

ABI

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Message Traffic 0 50100150200250300350400450

Connectivity

0
1
2
3
4
5
6

Storage

Figure 4. Storage: Algorithm ABI

ity.
As expected, the storage cost for algorithm ABI in-

creases with increased message traffic density. This cost
is constant, however, with respect to connectivity. Since
this algorithm has the least laziness in each dimension, it
represents a baseline for performance comparisons.

5.2 Laziness in Marker Propagation

Although the storage complexity of ABI is independent
of topology, this is not the case for algorithms in which
marker propagation is lazy (i.e., rows B and C ). For
these variants, marker propagation is influenced by the un-
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Figure 5. Storage vs Connectivity: Rows B and C

derlying application message pattern and is therefore sen-
sitive to topology. For these two rows, we examine the
relationship between topology and performance (i.e., stor-
age and flexibility). We use a fixed density of traffic (0.6
messages per channel).

First, we observe that maximum laziness in marker
propagation results in every marker being immediately fol-
lowed by an (unrecorded) send. Since receiving a dirty
message always prompts the recording of local state, all
variants in row C have essentially the same pattern of lo-
cal state recording. Thus, the storage complexity of each
variant in this row is the same. Furthermore, we observe
that deferring recording local state until the first communi-
cation action (i.e., the difference between column I and
II ) should not affect the number of messages recorded
as in transit. Therefore, we expect BI to have the same
storage cost as BII . Finally, for algorithms BIV and
CIV , the additional delay in propagating markers does not
change the time at which processes record local state. Since
processes record local state at the same time for these two
algorithms, they also record the same messages as being in
transit. Hence, we expect BIV to have the same storage
cost as CIV (and therefore the same storage cost as all the
row C algorithms).

All of these hypotheses are confirmed in Figure 5.
Only 3 distinct lines are visible since the storage complex-
ity of BIV is the same as each variant in row C , and BI
is the same as BII .

This figure also reveals the cost of propagating mark-
ers lazily: algorithms from row C have high storage com-
plexity, in particular for sparse topologies. The reason for
this cost is that delaying the propagation of markers in-
creases the time it takes to receive a return marker from
a neighbor. In the meanwhile, messages received from that
neighbor are likely to be recorded as in transit. This effect
is pronounced in sparse topologies where the neighbor is
unlikely to receive a marker from any other process.

As for flexibility, it is clear that algorithms in column
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Figure 6. Flexibility vs. Connectivity: Rows B and C

I have none. In addition, we expect no flexibility for algo-
rithms in row C since algorithms in this category propa-
gate markers only immediately before an unrecorded send,
hence prompting an immediate recording of state at the des-
tination. This leaves BII , BIII and BIV as candidates
for high flexibility. Since the amount of deferral is greatest
in column IV we expect this variant to have the greatest
flexibility. Figure 6 confirms that algorithm BIV enjoys
high flexibility.

5.3 A Hybrid Algorithm for Improved Per-
formance

From the previous section, we observe that BIV has the
greatest flexibility, but the worst storage cost. The rea-
son for this is that delaying recording local state increases
both the number of recorded receives and the number of
recorded sends. While the former can represent an im-
provement in storage cost (fewer messages in transit), the
latter can represent a worsening in storage cost (more mes-
sages in transit).

To reap the flexibility advantage of BIV as well as
the storage advantage of being eager ( BI ) we design a
hybrid algorithm that blends both. The hybrid algorithm
is lazy in recording local state when it expects to be a net
consumer of messages (i.e., receiving more than it sends),
otherwise it records its local state immediately. The judge-
ment of whether it is a net producer or consumer of mes-
sages is based on past observations of message frequency
so is only an estimate of future behavior.

Recall that process p sends messages on each outgo-
ing channel at an average rate of 1/µp . Let Np be the
set of p ’s neighbors and let Dp be the set of neighbors
from which p has received a marker. As a result of delay-
ing recording local state, the expected rate of new recorded
sends is

∑
q∈Np

1/µp . On the other hand, the expected
rate of new recorded receives is

∑
q∈Np\Dp

1/µq , since
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dirty channels cannot contribute recorded receives. Every
time p receives a marker, it re-assesses the likelyhood that
it is a net consumer by comparing these two rates. When
the rate of sending exceeds the rate of receiving, it records
local state.

The performance of this hybrid algorithm
( BI/BIV ), in comparison to the Chandy-Lamport
algorithm ( ABI ) is shown in Figures 7 and 8. (Recall that
the flexibility of ABI is, by definition, 0.) These figures
show an improvement in both storage cost and flexibility.

5.4 Eagerness of Marker Propagation

The algorithms discussed above all propagate markers after
recording local state. Our taxonomy, however, includes the
possibility of eagerly sending out markers before record-
ing local state (i.e., row A ). Algorithm AI is Chandy-
Lamport, while algorithm AIV is unimplementable as
discussed above. This leaves algorithms AII and AIII
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for analysis.
First note that these two algorithms have identical

marker propagation patterns. Algorithm AIII , however,
allows greater delay in recording local state and therefore
has greater flexibility than AII . Furthermore, since ev-
ery unrecorded receive in AIII is also an unrecorded re-
ceive in AII , the storage cost of the former is less than or
equal to that of the later. Hence, we only evaluate algorithm
AIII .

Compared with our baseline ( ABI ), we expect
AIII to have trivially more flexibility. We also expect
AIII to have better storage cost since this algorithm has
the same marker propagation pattern as ABI but delays
recording local state past some receives. It does not change
the recorded sends, but increases the number of recorded
receives. These hypotheses are confirmed in Figures 9
and 10.

Given that AIII dominates ABI 2 we adapted our

2Indeed, AIII compares favorably to all algorithms in row B , ex-



hybrid algorithm to combine AIII/BIV (rather than
ABI/BIV ). The adaptive decision-making process of
this new hybrid is the same: whenever a marker is re-
ceived a new estimate is calculated of whether the process
will be a net consumer of messages. If it will not be a
net consumer, the process broadcasts markers immediately,
but delays recording local state until there is an outgoing
message for any channel or an incoming message from the
dirty channel. As the Figures 9 and 10 show, the improved
hybrid algorithm is always better than the old one in both
storage and flexibility.

Among all these algorithms, when the connectivity is
low, algorithm AIII has the best storage. However, for
high connectivity network, hybrid algorithm AIII/BIV
offers the best storage. Regardless of connectivity, hybrid
algorithm AIII/BIV has the best flexibility.

6 Related work

A survey of rollback-recovery techniques is available
in [3]. Techniques can be categorized as uncoor-
dinated checkpointing, coordinated checkpointing, and
communication-induced checkpointing. Under this decom-
position, the lazy snapshot variants discussed here are all
nonblocking coordinated checkpoint protocols. Work on
uncoordinated checkpointing has focussed on minimizing
the domino effect, while work on coordinated checkpointed
has focussed on minimize the communication and control
overhead. Lazy snapshots, although clearly a conservative,
coordinated approach, have some of the advantages of un-
coordinated strategies in so far as they do permit some flex-
ibility as well as reducing the storage costs.

7 Concluding remarks

Lazy snapshots are a generalization of the Chandy-
Lamport coordinated snapshots algorithm. This general-
ization loosens the requirements on when processes must
record the local state and when markers must be sent. We
have described a taxonomy of lazy snapshot algorithm vari-
ants. This taxonomy is organized around two orthogonal
dimensions of laziness: when a process records the local
state, and when a process sends out markers. Within this
framework, we conducted a methodical investigation of the
performance implications for each variant.

Our results indicate that eagerly sending markers al-
ways reduces the amount of storage required to save chan-
nel state as well as affording the process some flexibility in
scheduling the potentially expensive task of recording the
local state. On the other hand, lazily recording the local
state dramatically increases the amount of flexibility. One
might hope that this delay would also reduce the number of
messages in transit, since it reduces the number unrecorded
receives (from which messages in transit are inferred). Un-
fortunately, while a delay in recording the local state at pro-

cept for the flexibility acheived by BIV .

cess p decreases the number of messages in transit into p
(as unrecorded receives become recorded receives), it also
increases the number of messages in transit out of p (as
unrecorded sends become recorded sends). The net result
is that laziness in recording local state provides significant
flexibility at the cost of a some increase in storage.

With these relative strengths in mind, we have de-
signed a hybrid algorithm that combines eager and lazy
recording of the local state. A process decides dynami-
cally, based on locally observable network traffic, whether
delaying its recording of the local state will be beneficial.
This hybrid approach blends the strengths of the two base
algorithms, yielding benefits in both storage and flexibility.
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