
Lazy Snapshots

Nigamanth Sridhar and Paolo A.G. Sivilotti
Computer and Information Science

The Ohio State University
Columbus, OH 43210-1277

{nsridhar,paolo}@cis.ohio-state.edu

Abstract

Determining the global state of distributed systems is an

important problem in the absence of global memory and

global clocks. Several algorithms have been proposed for

collecting global states. This paper presents an optimiza-

tion to the algorithm proposed by Chandy and Lamport

that lets processes in a distributed system take a lazy ap-

proach to recording their state. The lazy optimization re-

laxes the constraint on when a process must record its local

state, and send out markers. Our algorithm yields the flex-

ibility of postponing a local snapshot and hence reducing

the amount of space required to save channel state.

Keywords: parallel/distributed algorithms, snap-
shots, termination detection.

1 Introduction

The global state of a distributed system consists of
the state of each process and the messages in each
channel. Recording the global state of a distributed
system is an important problem and it finds applica-
tions in several aspects of distributed system design.
Some such applications include the detection of stable
properties such as deadlock [9] and termination [12];
checkpoint recovery from failures [8]; debugging dis-
tributed software, by resetting the system state to a
consistent global state and restarting execution from
that state [5, 6]; and transformation of an algorithm for
solving a static network problem into one that solves
the dynamic version of the same problem [3]. A global
snapshot algorithm determines the global state of a
system.

Several algorithms have been proposed to solve
the problem of determining the global state of a dis-
tributed system [4, 10, 11, 13]. Common among all the
algorithms is some way of distinguishing events that
occurred before the snapshot from those that occurred
after the snapshot. The most popular algorithm for
the system model that we consider, described in Sec-
tion 2, is the marker algorithm proposed by Chandy
and Lamport [4].

The Chandy-Lamport algorithm uses marker
messages that are sent by some process in the sys-

tem identified as the initiator to distinguish the before
messages from the after messages. In this paper, we
present an optimization to the Chandy-Lamport algo-
rithm that allows processes to take a lazy approach to
recording their local state.

Section 2 describes the system model that we con-
sider. The Chandy-Lamport algorithm is presented in
Section 3. Sections 4 and 5 present our optimization
and a proof that the algorithm is correct. We exam-
ine some related work in Section 6 and summarize our
contributions and conclude in Section 7.

2 The System Model

A distributed system consists of a finite set of processes
and a finite set of channels. It is described by a labeled,
directed graph in which the vertices represent the pro-
cesses and the edges represent the channels. There is
no globally shared memory or clock. Processes com-
municate only through messages passed on channels
that connect them. Let Cpq denote the channel from
process p to process q .

Processes can perform three kinds of actions - in-
ternal events, message send events and message receive
events. A message mpq from process p to process q
is sent by the action send(mpq) executed on process
p , and is received by the action recv(mpq) executed
on process q .

Channels are assumed to have infinite buffers, to
be error-free, and to deliver messages in the order they
are sent (FIFO). The message delay in a channel is fi-
nite. A message is said to be in transit when it has
been sent by the source process but has not been re-
ceived by the destination process. i.e., send(mpq) has
been executed on process p , but recv(mpq) has not
been executed on process q . The state of a channel
at a particular time is the set of all messages that are
in transit in that channel.

The global state of the system is defined as the
union of local states of all processes and the states of
all channels. In a consistent global state, every mes-
sage that is recorded as received has also been recorded
as sent. Consistent global states are meaningful global
states and inconsistent global states are meaningless,
i.e., the system could never be in such a state. Figure 1



s

p

q

r

da

b

c

he

i

g
k

j

l

f

Figure 1. A consistent cut in a distributed system

s

p

q

r

da

b

c

he

i

g
k

j

l

f

Figure 2. An inconsistent cut in a distributed system

shows a time-line diagram of a distributed process sys-
tem with a consistent cut. Figure 2 shows a time-line
diagram of a distributed system with an inconsistent
global state.

3 The Chandy-Lamport Algorithm

This section presents the Chandy-Lamport algorithm
for determining global states of distributed systems.
The algorithm works as follows: Each process records
its own state and the two processes on which a chan-
nel is incident cooperate in recording the channel state.
The algorithm cannot ensure that the states of all pro-
cesses and all channels are recorded at the same instant
in time. However, the algorithm does ensure that the
recorded process and channel states form a meaningful
global system state.

The global state recording algorithm is superim-
posed with the underlying computation, i.e., it runs
concurrently with, but does not alter, the underlying
computation. The algorithm sends messages and re-
quires processes to carry out computations, but these
do not interfere with the underlying computation.

The algorithm uses a marker to distinguish be-
tween events that occurred before a snapshot is taken
and events that occurred after. The algorithm can
be initiated by any process, identified as the initiator.
The initiator spontaneously records its state and starts
executing the algorithm. The outline of the algorithm
in the form of rules is presented in Figure 3.

The global state gathered by this algorithm is

Marker-Sending Rule for a Process p . For
each outgoing channel C :
p sends one marker along C after p records its
state and before p sends further messages along the
same channel.

Marker-Receiving Rule for a Process q .
On receiving a marker along a channel C :
if q has not recorded its state then

begin q records its state;
q records the state of C as the empty sequence

end
else q records the state of C as the sequence of messages

received along C after q ’s state was recorded and
before q received the marker along C .

Figure 3. Chandy-Lamport algorithm for distributed
snapshots

a consistent one. All the messages that have been
recorded as received are also recorded as sent, i.e.,
there are no orphan messages. Further, all messages
that have been recorded as sent are either recorded as
received at the destination process, or are recorded as
being in transit in the channel that the message was
sent along. See [4] for a full proof of correctness.

4 An Optimization: Lazy Snapshots

4.1 Overview

The algorithm presented in Section 3 requires that
every process q , immediately on receiving a marker
from another process p , takes a local snapshot. This
ensures that no messages sent by p to q after p
recorded its snapshot are included in q ’s snapshot.
Indeed, no messages received after the first marker are
included in q ’s local state. This condition is stronger
than necessary: To maintain the consistency of the
global state, we only need to guarantee that no or-
phan messages are included.

The optimization that we propose, therefore, al-
lows a process to postpone recording of its local snap-
shot. The postponement, however, needs to be con-
trolled so as to still maintain consistency of the global
snapshot that is gathered.

The new algorithm works as follows. On receiving
a marker from process p , process q “remembers” the
reception of a marker from p . It sends markers on
all outgoing channels as usual. However, q does not
need to record its local snapshot as yet. It postpones
the recording of the local snapshot to a later time. q
is forced to take a local snapshot only if q receives a
message from a process p , from which it has already
received a marker.

By delaying the recording of a local snapshot, the



number of in-transit messages is decreased. Thus, a
process can reduce the amount of channel state that
it needs to record with the snapshot. The ability to
postpone recording local state also has the advantage
of giving a process flexibility in scheduling this poten-
tially expensive task.

There is one technical problem with the postpone-
ment as described, however. Consider the case of a
process r that does not communicate with the rest of
the system. This process could just perform some lo-
cal computation, never sending or receiving messages
to the other processes. In such a case, all other pro-
cesses in the system could take their local snapshots,
but the global snapshot cannot be calculated until r
records its local state.

In order to force the global state collector to ter-
minate, a third event can be added: A marker has
been received on every incoming channel. The local
snapshot triggered by this event will record the state
of every incoming channel as empty.

The global state that this algorithm collects is
indeed consistent. The algorithm can be seen as a
generalization of the Chandy-Lamport algorithm. It
reduces the space complexity of the recorded chan-
nel state and permits flexibility in scheduling the po-
tentially expensive task of recording local state. The
complete algorithm is presented in Section 4.3 and Sec-
tion 5 proves that the algorithm is correct.

4.2 The Snapshot Layer

The snapshot collector is composed with the system by
layering. We call the original program the system layer
and the snapshot collector executes in the snapshot
layer. As a result of the composition, each process in
the system is associated with a snapshot proxy. This
proxy cooperates with the proxies of the rest of the
processes in the system to compute the global state of
the distributed system.

The snapshot proxy running in the snapshot layer
does not affect the system layer in any way. However,
each proxy does examine all messages that its associ-
ated process sends or receives. Based on markers that
are passed around in the snapshot layer and the mes-
sages in the system layer that the proxy examines, it
sends a message to its host process asking it to take a
local snapshot. In this way, the processes in the sys-
tem layer need no knowledge of the snapshot collector
protocol.

The snapshot proxy has some state associated
with it in order to be able to make decisions of when to
instruct its host process to record its local state. The
proxy is responsible for keeping track of which chan-
nels are dirty (a marker has been received along that
channel), and when local state has been recorded.

4.3 The Algorithm

The algorithm for lazy snapshots is presented in Fig-
ure 4 in the form of rules. The snapshot collector will
execute concurrently with the underlying program.

Marker-Sending Rule for a Process p . For
each outgoing channel C :
p sends one marker along C after p records its

state and before p sends further messages along the

same channel.

Marker-Receiving Rule for a Process q .
On receiving a marker along a channel C :
mark channel C as dirty;
if q has not recorded its state then

q records the state of C as the empty sequence
else q records the state of C as the sequence of messages

received along C after q ’s state was recorded and
before q received the marker along C .

State Recording Rule for a Process p . Pro-

cess p records its state after receiving a marker and

before p receives any message along a dirty channel.

Figure 4. Lazy Snapshot algorithm

When process q receives a marker from any
neighbor p , it “remembers” such a receipt by marking
the incoming channel C as dirty. Whenever a process
p receives a message from a process q , p checks if the
corresponding channel is dirty. If it is, then p records
its local snapshot, and then proceeds to process the
message from q . This is because the current mes-
sage from q has not been recorded as sent in the local
snapshot of q . (The FIFO behavior of the channel
guarantees that the message was sent after the marker
was sent.) If p records this message as received, then
this would lead to an inconsistent global state.

After p records its local state, if p receives a
marker from one of its neighbors, it needs to record
the state of the channel C on which p received the
marker. The state of the channel will be the sequence
of messages that p received along C in the time be-
tween the recording of p ’s local state and the reception
of the marker on C .

If p has received markers from all of its neigh-
bors, and still has not taken a local snapshot, p
records its local state at this point. A snapshot taken
at this time will include both local state and the state
of all the incoming channels, all empty. This is be-
cause p has received markers from all its neighbors,
and hence any future message it receives from any of
its neighbors should not be in the snapshot for it to be
consistent.



5 Proof of Correctness

5.1 Notation

Before we present the proof of correctness of the lazy
snapshot algorithm, we present here some notation,
and a characterization of the rules in the algorithm.

We use the following terms to refer to the (abso-
lute) time at which the principal actions occur:

RLSp : Process p records its local state.

RMCpq
: Process q receives a marker on channel

Cpq .

SMCpq
: Process p sends a marker on channel Cpq .

RDCpq
: Process q receives a message on a dirty

channel Cpq .

USCpq
: Process p sends a message on channel

Cpq after recording local state (an “unrecorded
send”).

Using the terms presented above, the original al-
gorithm proposed by Chandy and Lamport can be
characterized by the following inequalities:

E1. (∀ p :: RLSp ≤ (Min q :: RMCqp
) )

E2. (∀ p, q :: RLSp < SMCpq < USCpq )

The inequality E1 says that a process p must
record its local state either before or—at the latest–at
the time it receives its first marker. This is the same
as the Marker Sending Rule in the original algorithm,
which states that each process must record its local
state upon receiving the first marker along any of its
incoming channels. E1 also includes the case of the
initiator process, which records its local state before
any markers are received.

The second inequality E2 requires that each pro-
cess p must send a marker along each of its outgo-
ing channels after recording its local state and before
sending any messages along that particular channel.
That is, any unrecorded send along any channel Cpq

must be preceded by a marker along that same chan-
nel. Further, this marker has to be sent only after the
local state of the process has been recorded. This is
true of all processes, including the initiator process,
which sends out markers to its neighbors after record-
ing its own state.

Similarly, the lazy snapshot algorithm can also be
characterized by a pair of inequalities:

L1. (∀ p :: RLSp < (Min q :: RDCpq
) )

L2. (∀ p, q :: SMCpq < USCpq )

q

p
RM Cqp

RLS pRD Cqp

Figure 5. Receive on a dirty channel preceding RLS –
inconsistent cut

q

p
RM Cqp

RD Cqp
RLS p

Figure 6. Receive on a dirty channel after RLS – con-
sistent cut

L1 requires that each process p in the network
record its local state before the first message along any
dirty channel is received. Figure 5 shows the receipt
of a message on a dirty channel before the local state
has been recorded. This would result in an inconsis-
tent global state. Figure 6 shows the receipt of such
a message being preceded by a local snapshot, which
is what L1 enforces. This is consistent with the State
Recording Rule in the lazy snapshot algorithm (Fig-
ure 4). This is a relaxation of E1, in that processes
are not forced to record their local state upon receipt
of markers. Instead, the local state recording can be
postponed until the first message along a dirty channel
is received.

L2 is a relaxation of E2. We still require that
before a process sends an unrecorded message along
any channel, a marker must have been sent along that
same channel. This is how we can ensure that no in-
consistencies occur in the global snapshot. Figure 7
shows an unrecorded send at a process p before a
marker has been sent along the same channel. This
would result in an orphan message figuring as part of
the global state. This is rectified in Figure 8, where
the unrecorded message is sent after a marker has been
sent along the same channel. This marker would force
process q to take its local snapshot without includ-
ing the receipt of the current message. However, the
sending of markers is not dependent on when the local
state is recorded. A process is free to record its local
state at any time, regardless of when its sends mark-
ers along its outgoing channels. The recording of local
state is governed only by L1.

For any process p , (∀ q :: RMCqp
< RDCqp

) .



RLS p

q

p

RM Cpq

SM Cpq
US Cpq

Figure 7. Unrecorded send preceding marker in chan-
nel Cpq – inconsistent cut

RLS p

RLS q

p

q
RM Cpq

SM Cpq
US Cpq

RD Cpq

Figure 8. Unrecorded send in channel Cpq after
marker has been sent – consistent cut

Therefore, E1 ⇒ L1. Further, E2 ⇒ L2. These
two implications show how the lazy snapshot algo-
rithm is a generalization of the original formulation
of the global state detection algorithm.

5.2 Proof

The safety and progress properties that a correct
global state detection algorithm should have are as
follows:

Safety. The global state collected by the algorithm is
legal (consistent cut)

Progress. The global state detection algorithm ter-
minates

In order to prove the safety part, we have to show
that no orphan messages are part of the global snap-
shot. This requires us to show that the following proof
obligations are indeed properties of the lazy snapshot
algorithm:

S1. Every message recorded as received has been
recorded as sent.

S2. Every message recorded as in transit has been
recorded as sent.

Proof. In order for S1 to be violated, a process p has
to have sent a message mpq after its local snapshot
(the message is not recorded as sent in the global

state), and q does record the receipt of mpq in its
local state. In order for mpq to be an unrecorded
send, p must have already sent a marker along Cpq .
This marker, upon reaching q , makes the channel Cpq

dirty from q ’s perspective. This means that before
q can process the receipt of any message along this
channel, it has to record its local state (L1). Since
the system model assumes FIFO channels, and mpq

arrives at q along a dirty channel, it is not recorded
as received in q ’s local state, and consequently in the
global state. Thus, S1 is a property of the lazy snap-
shot algorithm.

A message mpq is marked as being in transit by
a process q if the message arrives after q has taken
its local snapshot. In fact, this message is included as
“in transit” only after a marker is received along the
same channel is received. Since channels are FIFO,
the marker along Cpq must have been sent by p after
the message mpq was sent. This can only be the case
if the send of mpq has indeed been recorded in p ’s
local snapshot. If, on the other hand, this had been
an unrecorded send, the send must have been preceded
by a marker along the channel Cpq (L2). Thus, S2 is
also a property of the lazy snapshot algorithm.

The progress part of the specification states that
the snapshot collector eventually computes the global
state of the system. The proof that the lazy snapshot
algorithm indeed terminates follows.

Proof. The algorithm begins with an initiator process
sending off a marker to each of its neighbors to initi-
ate the collection of a new snapshot. According to the
Marker-Receiving Rule, each process, on receiving a
marker along an incoming channel remembers the re-
ceipt of the marker, and also forwards the marker on
all its outgoing channels. The marker, therefore, gets
propagated to all the processes in the system. Thus,
every process eventually receives a marker along every
one of its incoming channels. The Marker-Receiving
Rule also checks to see if this particular marker is the
last marker, and if it is, the process takes its local snap-
shot. Since all processes will receive markers along all
incoming channels, all processes will take their local
snapshots. That is, the snapshot collector will even-
tually compute the global state of the distributed sys-
tem.

6 Related Work

Several solutions to the global state detection prob-
lem have been proposed. Spezialetti and Kearns [14]
proposed an optimization of the Chandy-Lamport al-
gorithm to combine concurrently initiated snapshots.
This way, if multiple processes initiate snapshot win-
dows concurrently, the processes will only need to take



one local snapshot and distribute the same local snap-
shot to the different initiators.

Venkatesan [15] proposed an incremental ap-
proach to collecting global snapshots. Using this solu-
tion, each process maintains the most recent snapshot
taken. A new local snapshot would then just involve
combining the local state changes since the last snap-
shot with the most recent snapshot. This algorithm,
however, assumes the presence of only a single initiator
process.

Another extension to the Chandy-Lamport algo-
rithm was proposed by Helary [7]. In this algorithm,
snapshot windows are marked by using message waves.
Every process in the system is visited by a wave con-
trol message, and this triggers the recording of local
state at the process. As soon as a wave terminates,
the next wave is initiated.

Several other solutions to the problem have been
proposed under different system models such as non-
FIFO systems [10, 11, 13] and causal ordering sys-
tems [1, 2].

Our algorithm differs from this body of work in
that it generalizes the Chandy-Lamport scheme, yield-
ing the flexibility of postponing a local snapshot and
hence reducing the amount of space required to save
channel state.

7 Conclusion

In this paper, we have presented an optimization to
the marker-based global state detection algorithm pro-
posed by Chandy and Lamport. The new algorithm
allows processes in a distributed system to postpone
their recording of local state up to a point where the
global state is still consistent. In systems where the
degree of the communication graph is high, and the
time complexity of recording and updating local state
is large, this optimization promises much better results
by reducing the number of updates to the minimum
possible.

8 Acknowledgments

This research was supported in part by NSF grant
CCR-0081596, by an Ameritech Faculty Fellowship,
and through a gift from Lucent Technologies.

References

[1] A. Acharya and B. R. Badrinath. Recording
distributed snapshots based on causal order of
message delivery. Information Processing Letters,
44(6):317–321, 1992.

[2] A. Alagar and S. Venkatesan. An optimal algo-
rithm for distributed snapshots with causal mes-

sage ordering. Information Processing Letters,
50:311–316, 1994.

[3] G. Bracha and S. Toueg. Distributed deadlock
detection. Dist. Comp., 2(3):127–138, 1987.

[4] K. M. Chandy and L. Lamport. Distributed snap-
shots: Determining global states of distributed
systems. ACM Transactions on Computer Sys-
tems, 3(1):63–75, 1985.

[5] R. Cooper and K. Marzullo. Consistent de-
tection of global predicates. Proceedings of
the ACM/ONR Workshop on Parallel and Dis-
tributed Debugging, published in ACM SIGPLAN
Notices, 26(12):167–174, 1991.

[6] E. Fromentin, N. Plouzeau, and M. Raynal. An
introduction to the analysis and debug of dis-
tributed computations. Proc. of 1st Intl. Conf.
on Algorithms and Architectures for Parallel Pro-
cessing, pages 545–553., May 1995.

[7] J.-M. Helary. Observing global states of asyn-
chronous distributed applications. In Proc. of the
3 rd Intl. Workshop on Dist. Algorithms, number
392 in LNCS, pages 124–135. Springer, 1989.

[8] R. Koo and S. Toueg. Checkpointing and
rollback-recovery for distributed systems. IEEE
Trans. on Soft. Engg., 13(1):23–31, 1987.

[9] A. Kshemkalyani and M. Singhal. Efficient de-
tection and resolution of generalized distributed
deadlocks. IEEE Trans. on Software Engineer-
ing, 20:43–54, 1994.

[10] T. Lai and T. Yang. On distributed snapshots.
Inf. Proc. Letters, 3(25):153–158, May 1987.

[11] H. F. Li, T. Radhakrishnan, and K. Venkatesh.
Global state detection in non-FIFO networks. In
International Conference on Dist. Comp. Sys-
tems, pages 364–370, 1987.

[12] F. Mattern. Algorithms for distributed termina-
tion detection. Dist. Comp., 2(3):161–175, 1987.

[13] F. Mattern. Efficient algorithms for distributed
snapshots and global virtual time approximation.
Journal of Parallel and Distributed Computing,
18:423–34, 1993.

[14] M. Spezialetti and P. Kearns. Efficient distributed
snapshots. In Proc. 6th Int. Conf. on Dist. Com-
puting Systems (ICSCS-6), pages 382–388, 1986.

[15] S. Venkatesan. Message-optimal incremental
snapshots. Journal of Computer and Software En-
gineering, 1(3):211–231, 1993.


