A NEW DISTRIBUTED RESOURCE-ALLOCATION ALGORITHM
WITH OPTIMAL FAILURE LOCALITY

Paolo A.G. Sivilotti, Scott M. Pike, and Nigamanth Sridhar
Department of Computer and Information Science
The Ohio State University
Columbus, OH 43210-1277

Abstract

Failure locality measures an algorithm’s robustness to
process failures. We present a new algorithm for the
dining philosophers problem — a classic problem in
distributed resource allocation — that has optimal fail-
ure locality. As a refinement, the algorithm can be eas-
ily parameterized by a simple failure model to achieve
super-optimal failure locality in the average case.

Keywords: distributed algorithms, fault tolerance,
dining philosophers, failure locality.

1 Introduction

The dining philosophers problem is a classic and fun-
damental resource allocation problem [6]. Although
first formulated as a shared-memory concurrency prob-
lem, it has since received considerable attention as a
distributed conflict-resolution problem [8]. It can be
seen as a generalization of the mutual exclusion prob-
lem, in which neighboring processes cannot access a
shared resource simultaneously. It has many applica-
tions in the construction of other distributed resource-
allocation algorithms, including drinking philosophers
[1] and committee coordination[2].

Two common metrics for evaluating various solu-
tions to the dining philosophers problem are message
complexity and response time. Message complexity is
the number of messages sent in the system as a result
of a single process requesting access to a shared re-
source. Response time is the delay between a process
requesting access to a shared resource and access being
granted to that process.

Recently, Choy and Singh [3] have defined a new
metric for evaluating such solutions: failure locality.
Failure locality measures the robustness of an algo-
rithm in the presence of (process) failures. The m-
neighborhood of a process p is defined as the set of
processes reachable by at most m hops from p in the
conflict graph. (The 0-neighborhood of a process p is
just p itself, and its 1-neighborhood is p and its im-
mediate neighbors.) A resource-allocation algorithm

has failure locality m if the failure of a process only
affects processes within its m -neighborhood. Failure
localities of 0 and 1 are not possible under a model of
computation with weak fairness, fail-stop failures, and
reliable but arbitrarily slow channels [4]. Choy and
Singh proved an optimal lower bound of 2 by develop-
ing an algorithm with failure locality of 2 [4]. Their
algorithm assumes FIFO channels and depends on an
interrupt-driven scheme.

In this paper, we present a new algorithm for dining
philosophers that also achieves the optimal failure lo-
cality of 2. Unlike Choy and Singh, however, this algo-
rithm does not require FIFO channels and does not use
an interrupt mechanism. The algorithm is based on a
dynamic assignment of priorities to processes that en-
sures progress while allowing lower-priority processes
to overtake higher-priority neighbors in the presence
of failures.

The rest of this paper is organized as follows. In
Section 2, we define the dining philosophers problem
and our models of computation and failure. In Sec-
tions 3 and 4, we briefly review the hygienic [2] and
asynchronous-doorway [3] solutions to this resource-
allocation problem and summarize their performance
characteristics. Section 5 is the heart of the paper,
where we describe our dynamic threshold-point solu-
tion as a combination of the two solutions previously
outlined. An analysis of the performance of this new
solution reveals that it improves the failure locality of
these algorithms to 2. In Section 6, we describe how
the expected failure locality can be made super-optimal
if a model for the relative likelihood of process failures
is known. Finally, in Section 7 we synopsize our find-
ings.

2 Dining Philosophers Problem

2.1 Model of Computation

We assume that processes are distributed, communi-
cating only by asynchronous message passing. Chan-
nels are unordered but reliable, delivering messages
(with some unbounded delay) without loss, duplica-

tion, or corruption. Processes, however, can fail. We
assume a fail-stop model in which a process (with-
out warning) stops executing commands and remains
failed forever [5].

2.2 Problem Specification

An instance of the dining philosophers problem can be
viewed as a graph in which the nodes represent pro-
cesses and the edges define the adjacencies between
processes (the neighbor relation). This graph is known
as the conflict graph. We assume that the conflict
graph is a subgraph of the communication graph, so
each process can communicate directly with each of its
neighbors.

Processes are modeled by one of three states: think-
ing, hungry, or eating. The only permitted transitions
are from thinking to hungry, from hungry to eating,
and from eating back to thinking. Processes eat for a
finite amount of time, but may think indefinitely. Pro-
cesses control their transitions from thinking to hungry
and from eating to thinking, but the conflict-resolution
layer controls their transitions from hungry to eating.

A solution to the dining philosophers problem is an
algorithm for this conflict-resolution layer that satisfies
two conditions:

Safety: No two neighbors eat simultaneously.
Progress: Every hungry process eats eventually.

The safety property can be ensured by the use of
forks. A fork is a token shared between two neighbors;
there is exactly one fork associated with each edge in
the conflict graph. No two neighbors can hold the same
fork simultaneously. Moreover, a process can eat only
if it holds all of its forks. Thus, no two neighbors can
eat simultaneously, so safety is guaranteed.

3 Hygienic Algorithm

The hygienic solution [2] to the dining philosophers
problem is based on maintaining a partial order of
priority among processes. That is, each edge of the
conflict graph is given a direction representing prior-
ity such that the graph is acyclic. Processes lower in
the partial order are said to be of higher priority. A
fork held by a higher priority neighbor is said to be
clean, while one held by a lower priority neighbor is
said to be dirty.

When two hungry processes compete for the same
fork, the conflict is resolved in favor of the higher-
priority process. There is no deadlock because the
acyclicity of the partial order prevents the formation
of “waits-for” cycles among the processes.

There are two key parts to the hygienic solution.
The first is that a higher-priority hungry process never

yields to a lower-priority neighbor (i.e., a hungry pro-
cess never relinquishes a clean fork). The second is
that after a process eats, it lowers its priority below
that of all its neighbors (i.e., it rises above them in the
partial order). This operation preserves the acyclicity
of the graph. Together, these properties are sufficient
to ensure the required progress property.

Informally, the correctness of this algorithm is seen
by the following argument. Because there are no cy-
cles, if a process is hungry, there exists a process (per-
haps of higher priority) that is hungry and has no hun-
gry higher-priority neighbors. This process can eat.
So, if a process becomes hungry, some (possibly dif-
ferent) process will eventually eat. This satisfies weak
(global) progress; namely, if some process is hungry,
then eventually some process eats.

To satisfy strong (individual) progress, we must en-
sure that each process that becomes hungry is, itself,
eventually given permission to eat. This is proven with
a metric. First, let the edges of the partial order point
down (i.e., in increasing priority). Now a process y is
reachable from a process x exactly when there is a di-
rected path from z to y. A good metric for a hungry
process u is the number of (higher-priority) processes
reachable from u plus the number of (higher-priority)
processes reachable from u that are thinking. Since
eating always lowers the priority of a process below
all its neighbors, this metric cannot increase. Further-
more, it is bounded below (by 0, when the process
has no higher-priority neighbors). Finally, it is guar-
anteed to decrease by the observation that if there is
a hungry process, there is a reachable highest-priority
hungry process that can eat. [2]

This algorithm has the advantage of optimal mes-
sage complexity (O(d)) but suffers from poor failure
locality, since it allows the formation of extremely long
dependency chains. The problem is that a process p
never yields to a lower-priority neighbor, even if p is
still missing forks from higher-priority neighbors. In
the worst case, the length of the dependency chain can
be the diameter of the graph, and hence linear in 7,
the total number of processes.

4 Asynchronous Doorways

4.1 Static Process Priorities

To improve failure locality, Choy and Singh[3] in-
troduce a fault-tolerant fork-collection scheme that
breaks long dependency chains. This is achieved us-
ing a preemption mechanism based on static process
priorities.

Choy and Singh precompute a fixed partial ordering
on processes by node-coloring the conflict graph. Us-
ing integers to represent colors, a greedy algorithm can
assign a color to each node using at most é+1 colors.
Since neighboring processes always have distinct col-

ors, the resulting partial order guarantees acyclicity.
In this scheme, processes with lower color have higher
priority.

To simplify the discussion, let color(p) denote the
integer assigned to process p. If p and ¢ are neigh-
bors, and color(p) < color(q) , then ¢ is called a high
neighbor with respect to p. Similarly, p is called a low
neighbor with respect to ¢. Thus, the low neighbors
of a process p constitute the set of its higher-priority
neighbors.

4.2 The Fork-Collection Scheme

Choy and Singh use the low-neighbor set to define a
threshold point for their fork-collection scheme. When
a process p becomes hungry, it sends a fork request to
every low neighbor for which p does not already hold
the fork. During this period, p yields the shared fork
to any requesting neighbor, regardless of that neigh-
bor’s priority relative to p.

Once p has collected every low fork, p reaches its
threshold point and sends a fork request to every high
neighbor for which p does not already hold the fork.
While at its threshold point, p defers fork requests
from high neighbors; this protects p from being pre-
empted by lower-priority processes. If p receives a
fork request from a higher-priority neighbor, however,
then p still gets preempted and must yield the re-
quested fork. Since the fork is released to a low neigh-
bor in p’s threshold set, p is no longer at its thresh-
old point. Thus, a consequence of preemption is that
p must also yield forks to every high-neighbor whose
fork request has been deferred.

At this point, the fork-collection scheme starts over
and p pursues its threshold point again. If p manages
to collect all of its high and low forks, then p imme-
diately proceeds to eating. While eating, p defers all
fork requests from high and low neighbors alike.

4.3 Improving Failure Locality

Choy and Singh’s fork-collection scheme achieves a
constant failure locality of 2, a great improvement over
the linear failure locality of the hygienic solution. If
a hungry process p has a low neighbor ¢ that has
failed while holding the fork, then p will shield all of
its remaining neighbors from starvation. Since ¢ is a
low neighbor and p can never get the fork from ¢, p
will never reach its threshold point. Consequently, p
will always yield forks to requesting neighbors. In this
case, the failure locality is 1.

The second case is when a hungry process p has a
high-neighbor ¢ that has failed while holding the fork.
If p is at its threshold point, it can starve its high
neighbors. This can happen for either of two reasons.
First, p may have no low neighbors, so it is trivially at
its threshold point and cannot be preempted. Second,

all of p’s low neighbors may be permanently think-
ing, so p never receives a preempting request from a
hungry low neighbor. In either case, p’s high neigh-
bors will be unable to reach their threshold points, be-
cause they cannot get the fork from their low neighbor
p. Consequently, they will yield to any fork request,
thereby shielding the rest of the system from ¢ ’s fail-
ure. In this case, the failure locality is 2.

4.4 Problems with Progress

The algorithm as described above is not correct, be-
cause it fails to satisfy the progress requirement. With
the static ordering of process priorities, high-priority
processes maintain their high priority even after eat-
ing. Consequently, such processes can cycle around to
preempt lower-priority processes infinitely often. This
unbounded overtaking can starve lower-priority hun-
gry neighbors.

To overcome this problem, Choy and Singh use the
notion of an asynchronous doorway. Abstractly, a
doorway is a block of code such that a process outside
the doorway (i.e., waiting to execute the code) will be
blocked until neighbors already past the doorway have
exited (i.e., finished executing the code). The asyn-
chronous doorway imposes a new priority hierarchy on
processes; namely, any process which is past the door-
way has priority over any process outside the doorway.
This mechanism prevents unbounded overtaking by
blocking higher-priority processes outside the doorway
until lower-priority processes past the doorway have
eaten. This modification, while ensuring progress, in-
creases the failure locality from 2 to 3, because the
wait-for dependency chain now includes the doorway
as well.

5 Dynamic Threshold Points

Choy and Singh’s fork-collection scheme alone failed
to guarantee progress because the partial ordering of
process priorities was static. The asynchronous door-
way mechanism eliminated unbounded overtaking, but
it increased the failure locality from 2 to 3. Our algo-
rithm ensures progress differently by incorporating a
dynamic partial ordering on processes. The result is a
correct dining philosophers algorithm with an optimal
failure locality of 2.

5.1 Algorithm

The dynamic threshold-point algorithm combines the
dynamic partial ordering from Chandy and Misra with
the concept of threshold points from Choy and Singh.
When a process becomes hungry, it attempts to ac-
quire forks from higher-priority neighbors (i.e., the
neighbors in its threshold set). When a process holds
all forks from its higher-priority neighbors (i.e., all of

its dirty forks), the process is at its threshold point.
Processes at their threshold point do not release clean
forks. A hungry process that holds all of its forks can
eat. After eating, the process lowers its priority.

The key difference between this algorithm and the
hygienic solution is that a hungry process will release
a requested clean fork if it is not at its threshold point.
This ensures low failure locality by breaking long de-
pendency chains.

The key difference between this algorithm and the
asynchronous-doorway solution is that the partial or-
der changes over the course of the computation. This
ensures progress because high-priority processes lower
their priority after eating, preventing unbounded over-
taking of lower-priority hungry neighbors.

Below we give the algorithm in a UNITY-like nota-
tion [2]. Every action is identified by a label. Every
action begins with a guard, written inside curly braces.
If the guard is true when the action is (nondetermin-
istically) selected for execution, the corresponding se-
quence of statements is executed atomically.

Each process p has a variable state which can be
thinking , hungry, or eating. The relation N(p,q)
is true exactly when p and ¢ are neighbors. We write
p < ¢ toindicate that N(p,q) and ¢ has higher prior-
ity than p. The variable fork(p,q) indicates the lo-
cation of the fork shared by p and ¢, while clean(p, q)
is a boolean that is true exactly when this fork is clean.
Finally, the variable req(p,q) indicates the location of
the request token shared by p and gq.

The first action, H,, , has a guard that the process p
is hungry and is not at its threshold point. This action
request the fork from all of p’s low neighbors. The
action P, is enabled when a request from a higher-
priority neighbor is received. In this case, p relin-
quishes the fork. As a consequence of this, p is not at
its threshold point. The action FE, is enabled when a
process may eat. In this case, p has all its forks and
no requests from higher priority neighbors. In this ac-
tion, p begins eating and raises its height above all
its neighbors, thus lowering itself in the partial order.
R, is enabled when p holds both a fork and its corre-
sponding request and p is not at its threshold point.
If the fork is dirty, the fork is released (to the higher-
priority neighbor). If the fork is clean, the fork is also
released (since p is not at its threshold point). This
action makes clean forks dirty and vice versa.

initially
(Vp :: p.state = thinking)
(Vp, q :: clean(p, q) = false)

(Yp,q:p<q: fork(p,q),req(p,q) = p,q)
Priorities form a partial order

always

ptp = (Vg:p<q: fork(p,q) =p)
p-h = p.state = hungry

p.t = p.state = thinking
p.e = p.state = eating
assign

»: {ph A —-pitp}
(Yg:N(p,q) N fork(p,q) =q A —clean(p,q) :
req(p,q) :==q ;)

Py: { reqp,q)=p AN fork(p,q) =p
A ~—clean(p,q) }
fork(p,q) ==q ;
clean(p, q) := true ;
req(p,q) ==q ;

Ep: {ph A (Vg:N(p,q): fork(p,q) =p A
(clean(p,q) V req(p,q) =q))}
p.state := eating ;
(Vq: N(p,q) : clean(p, q) := false) ;

R,: { reqp,q)=p N fork(p,q) =p A —pip }
fork(p,q) ==q ;
clean(p, q) := —~clean(p,q) ;

5.2 Proof of Correctness

The proof of progress for the dynamic threshold-point
algorithm is similar to that for the hygienic algorithm.
In particular, hungry processes do not go up in the par-
tial order, since priority decreases only when a process
eats. Secondly, a hungry process does not remain at
the bottom of the partial order indefinitely. (Recall
that processes at the bottom of the partial order have
highest priority).

It is this second condition that requires some atten-
tion. Unlike the original hygienic solution, requested
forks can be relinquished by a process even though they
are clean. This happens when the process is not at its
threshold point. We must show, then, that a hungry
process cannot remain at the bottom indefinitely, con-
tinually giving up clean forks to lower-priority neigh-
bors.

We first define what is meant by the bottom of the
partial order. We say that a process w is at the bottom
of the partial order (u.bot) exactly when « has no low
neighbors that are hungry. We must prove:

u.h A uw.bot ~ —(u.h A u.bot)
(The ~» symbol indicates a leads-to relation.)

The proof uses the following lemmas.

Lemma 1. A process does not remain hungry and
at the bottom of the partial order without eventually
reaching its threshold point.

u.h A w.bot ~ —(u.h A u.bot) V (u.h A u.bot A u.tp)

Proof. We show that a hungry process u, remaining
at the bottom of the partial order, eventually reaches
its threshold point (i.e., u holds all its dirty forks).
Assume wu.bot holds. Then for every higher-priority
neighbor v of w, v is not hungry. There are two
cases: either u holds the shared fork (and it is dirty)
or v holds the shared fork (and it is clean). In the
former case, u holds the dirty fork. In the later case,
v holds the clean fork but is not hungry (since w.bot).
This means that v must not be at its threshold point.
Hence, v releases its fork to w. O

Lemma 2. A hungry process at the bottom of the
partial order and at its threshold point eventually eats
or is no longer at the bottom of the partial order.

u.h A w.bot A u.tp ~ —(u.h A u.bot)

Proof. We show that a hungry process, w, at its
threshold point does not remain at the bottom of the
partial order without eating.

First assume that u remains not only at the bot-
tom of the partial order but also at its threshold point
continuously. In this case, u eventually obtains all of
its clean forks. This is because, while at its thresh-
old point, u does not relinquish clean forks. Fur-
thermore, clean forks that u is missing are eventually
relinquished by the neighboring process (which holds
them as dirty forks).

The second case, then, is that © does not remain
at its threshold point continuously. For u to exit its
threshold point, it must lose one of its dirty forks to
a higher-priority neighbor. This can only occur if the
higher-priority neighbor is hungry and therefore v is
no longer at the bottom of the partial order. O

We are now ready to prove the fundamental prop-
erty that a hungry process does not remain at the bot-
tom of the partial order.

u.h A w.bot ~ —(u.h A u.bot)

Proof. We show that a hungry process cannot remain
at the bottom of the partial order indefinitely. Ei-
ther it eats (in which case it is no longer hungry) or
a higher-priority neighbor becomes hungry (in which
case it is no longer at the bottom). This theorem fol-
lows from Lemmas 1 and 2.

true
{ Lemma 2 }
u.h A wtop A uitp ~ —(u.h A u.top)
= { P~ P}
=(u.h A u.top) V (u.h A utop A u.tp)
~ =(u.h A u.top)
= { Lemma 1 and transitivity }
u.h A utop ~ —(u.h A u.top)

5.3 Failure Locality

The dynamic threshold-point algorithm wuses the
same fork-collection scheme (Section 4.2) as the
asynchronous-doorway algorithm. In both algorithms,
a dependency chain of length 2 can arise when a pro-
cess at its threshold point waits on a failed high-
neighbor. If this dependency chain occurs inside
an asynchronous doorway, however, processes blocked
outside the doorway will extend the dependency chain
to length 3. The dynamic partial ordering, however,
does not increase the failure locality, because it does
not introduce an additional “wait-for” dependency.

The analysis is similar to Section 4.3. A hungry pro-
cess p waiting on a failed low-neighbor ¢ will never
reach its threshold point. Consequently, p will always
yield forks to requesting neighbors, thereby shielding
p’s neighbors from the failure of q.

Alternatively, a hungry process p waiting on a failed
high-neighbor ¢ may have reached its threshold point.
Since a process at its threshold point does not release
forks, hungry high-neighbors of p will be starved. The
“wait-for” chain ends with p’s high-neighbors; since
they cannot reach their threshold point, they will al-
ways yield forks.

6 Expected Failure Locality

Choy and Singh established a lower bound of 2 on
failure locality [4]. Our algorithm attains this failure
locality in the worst case. It is possible, however, to
achieve super-optimal failure locality in the expected
case by parameterizing the algorithm with a process-
failure model.

Define the failure set of a process p as the set of
processes that can be affected (starved) by p’s failure.
This set grows and shrinks over the course of a com-
putation. When p does not hold any forks, the size
of the failure set is 1 (just p itself). Failure locality
can be defined as the height of a directed minimum-
spanning tree of the failure set, with the failed process
as the root. Often, the cardinality of the failure set is
a more relevant metric than the failure locality itself.

Failure sets need not be “symmetric” with respect
to their root. In the hygienic solution, for example,
the failure set of a process is all its “high descen-
dents”. That is, all the processes that can reach the
node (where edges are directed and point down in the
partial order). Consider a straight-line conflict graph.
The failure locality for hygienic is O(n) , which occurs
when all edges are pointed down and the node at the
bottom of the partial order fails.

The ezpected cardinality of the failure set, however,
may be quite a bit smaller. Consider a random ori-
entation of the edges up and down. When a process
fails, the size of the failure set is 1 plus the number
of “high descendents”. If the probability of an “up”

edge is p, the expected cardinality of the failure set
is 1/(p — p?) — 1. For example, with p = 1/2, the
expected cardinality of the failure set is 3.

Our algorithm creates a failure set that includes the
high neighbors of the failed process. In addition, the
failure set includes the low neighbors and their high
neighbors (i.e., failure locality of 2). On average, then,
the algorithm gives an approximate failure locality of
1+ w, where w is the proportion of low neighbors of
the failed process.

Therefore, on average the algorithm performs with
better than optimal failure locality if w is strictly less
than 1. In the limit, if w is kept close to 0, then the
expected failure locality of the algorithm is 1. That is,
if processes can be guaranteed to fail when they have
no low neighbors, the algorithm has super-optimal fail-
ure locality. Of course, such a guarantee is too strong
in our fail-stop model.

Consider the situation, however, where process fail-
ures occur according to some known distribution (e.g.,
negative exponential). Somehow, we would like to keep
the processes that are most likely to fail below as many
of their neighbors as possible.

To improve the average performance, we make use of
the unhygienic variation of the dining philosophers al-
gorithm [7]. in which requested forks may arrive dirty.
In this solution, a partial order is maintained by as-
signing an integer height to each process such that
neighbors have different heights. After eating, a pro-
cess must increase its height by some positive amount,
but it is not required to rise above all, or indeed any,
of its neighbors. The only requirements on the new
height of the process is that it be (i) greater than the
previous height and (ii) different from the height of
each neighbor. The first requirement ensures progress
by preventing a philosopher from eating infinitely of-
ten at the expense of a neighbor, while the second
requirement preserves the acyclicity of the graph.

With this modification, failure-prone processes can
be kept (on average) below their neighbors by increas-
ing their height comparatively little when they eat.
This modification leads to better expected failure lo-
cality.

7 Conclusion

In this paper, we have presented a new algorithm for
the dining philosophers problem. This algorithm uses
concepts from two known algorithms: (i) from the hy-
gienic algorithm, dynamic priority encoded in clean
and dirty forks; (ii) from the asynchronous-doorway
algorithm, threshold points that permit lower-priority
neighbors to overtake higher-priority neighbors. This
combination results in an algorithm with optimal fail-
ure locality. Unlike Choy and Singh’s optimal solution,
our algorithm does not require FIFO channels or in-

terrupt mechanisms. Furthermore, this algorithm can
be easily parameterized with a simple failure model to
achieve super-optimal ezpected failure locality.

There are several promising avenues for future inves-
tigation. The notion of a “threshold set” can be gen-
eralized to include any subset of lower-priority neigh-
bors. In particular, when the empty set is used, the
result is precisely the hygienic algorithm. In this sense,
the algorithm presented here can be viewed as a gen-
eralization of the hygienic solution.

The analytical treatment of expected failure local-
ity indicates that there is considerable utility in this
refinement. We intend to investigate this utility ex-
perimentally with simulation studies.

References

[1] K. M. Chandy and J. Misra. The drinking philoso-
phers problem. ACM Transactions on Program-
ming Languages and Systems, 6(4):632-646, Octo-
ber 1984.

[2] K. Mani Chandy and Jayadev Misra. Parallel Pro-
gram Design: A Foundation. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1988.

[3] Manhoi Choy and Ambuj K. Singh. Efficient fault-
tolerant algorithms for distributed resource allo-
cation. ACM Transactions on Programming Lan-
guages and Systems, 17(3):535-559, May 1995.

[4] Manhoi Choy and Ambuj K. Singh. Localiz-
ing failures in distributed synchronization. IEEE
Transactions on Parallel and Distributed Systems,
7(7):705-716, July 1996.

[5] Flavin Cristian. Understanding fault-tolerant dis-
tributed systems. Communications of the ACM,
34(2):56-78, February 1991.

[6] E. W. Dijkstra. Co-operating sequential processes.
In F. Genuys, editor, Programming Languages,
pages 43-112. Academic Press, New York, New
York, 1968.

[7] Rajeev Joshi and Jayadev Misra. Maximally con-
current programs. Technical Report TR-99-15,
The University of Texas at Austin, Austin, Texas
78712, April 1999.

[8] N. A. Lynch. Fast allocation of nearby resources
in a distributed system. In Proceedings of the 12th
Annual ACM Symposium on Theory of Computing,
pages 70-81, New York, 1980. ACM.

