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Abstract. We present an implementation of an eventually perfect fail-
ure detector, ♢P, in a partitionable network with arbitrary topology. This
network is built on weak assumptions using ADD channels, which are de-
fined as requiring the existence of constants K and D, not known to the
processes, such that for every K consecutive messages sent, at least one
is delivered within time D. The best previous implementation of ♢P on
ADD channels uses a heartbeat-based approach with time-to-live values
for messages. The message size complexity of this existing implementa-
tion is O(En logn) for the entire network for any given heartbeat. In
contrast, the solution presented in this paper organizes the network into
clusters, each with a single leader, to reduce the message size complexity
to O(En). The algorithm is structured as a series of superpositioned lay-
ers and a proof of correctness is given for the ♢P oracle based on these
layers. We compare the performance of the cluster-based failure detec-
tor with that of the best previous solution on various topologies using
simulation.

Keywords: failure detector · ADD channel · superpositioning · cluster-
ing

1 Introduction

1.1 Context

A failure detector is a distributed oracle that can be queried for information
about crashed processes. Failure detectors are a type of consensus problem in
that all nodes in a network must agree on the status of all other nodes. How-
ever, consensus problems cannot be solved deterministically in an asynchronous
system with failures [7, 5]. This is known as the impossibility result. Chandra et
al. [3] proposed using unreliable failure detectors as an alternative to circumvent
this impossibility result. Unreliable oracles make mistakes by incorrectly sus-
pecting correct processes or failing to suspect crashed processes. Although these
oracles are allowed to make mistakes, this paper concerns an eventually perfect
failure detector, meaning the oracle is only allowed to make these mistakes for
a finite amount of time.

The eventually perfect failure detector class, ♢P, was defined by Chandra
and Toueg [3] and is characterized by the properties of strong completeness and
eventual strong accuracy. These properties are defined as the following:
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1. Strong completeness: every crashed process is eventually permanently sus-
pected by every process

2. Eventual strong accuracy: Every correct process is eventually not suspected
by every correct process

Many previous implementations of ♢P assume models of partial synchrony
with bounded message delay or reliable communication [6, 14]. Sastry and Pike
[15] proposed an algorithm using much weaker assumptions for the commu-
nication channel. This communication channel is known as an Average De-
layed/Dropped (ADD) channel. This channel promises a certain number of mes-
sages are received in a given amount of time. Both the number of dropped
messages and the amount of time are unknown to the process, however.

The failure detector defined in this paper is built on top of an ADD channel
because it is the weakest communication channel used in previous implementa-
tions of ♢P. Kumar and Welch [10] built upon the initial failure detector result
on ADD channels by allowing an arbitrariy connected network. This implemen-
tation also concerns a ♢P algorithm on a network of arbitrary topology. Finally,
Vargas, Rajsbaum, and Raynal constructed an eventually perfect failure detec-
tor on ADD channels for an arbitrarily connected network with an improved
message size complexity [17]. This improvement was based on the addition of
a time-to-live value and heartbeat-based approach, both of which are common
techniques in networking.

1.2 Motivation

The result from Vargas, Rajsbaum, and Raynal using time-to-live values with a
heartbeat-based algorithm has a message complexity size of O(nlogn) per node
per heartbeat, which is equivalent to O(Enlogn) per heartbeat. This complexity
is improved to O(En) in this implementation using a hierarchy of clusters in
the network. This hierarchy of clusters can be constructed dynamically from an
arbitrary network.

1.3 Contribution

The central contribution of this work is in the reduction in complexity size of the
previous best implementation of an eventually perfect failure detector built on
ADD channels. This reduction in size complexity requires the additional logical
complexity of clustering, a hierarchy of nodes, and the use of superpositioning
techniques to organize and structure the algorithm. A proof of correctness for this
algorithm is constructed based on the correctness of the underlying algorithm
and the addition of an overlay network of nodes to transmit information between
leaders. An additional contribution of this work is the addition of a simulation
of the algorithm to show convergence for the failure detector comparing the
cluster-based algorithm discussed in this work to the original implementation.
This simulation compares a variety of topologies and shows that networks with
a topology optimized for clusters have improved convergence performance.



An Eventually Perfect Failure Detector on ADD Channels Using Clustering 3

2 Background

2.1 Eventually Perfect Failure Detectors

♢P can give unreliable information about process crashes for only a finite prefix.
Eventually, it must provide only correct information about crashed processes.
The oracle ♢P is of interest because it is both powerful and implementable. ♢P
is sufficiently powerful to solve many fundamental problems such as consensus
[3]. Unlike Perfect (P) [3], Strong (S) [3], and Marabout detectors [8], ♢P is the
only oracle implementable in partially synchronous systems [12].

2.2 ADD Channels

The communication channel this work is built on is known as an Average De-
layed/Dropped (ADD) channel [15]. An ADD channel from nodes p to q, given
unknown constants K and D, satisfies the following two properties:

– The channel does not create or duplicate messages
– For every K consecutive messages sent by p to q, at least one is delivered to

q within D time

In addition, processes on ADD channels can fail only by crashing, pairs of
processes are connected via two reciprocal ADD channels, and each process has
access to a local clock that generates ticks at a constant rate.

2.3 Heartbeat and Time-to-Live

Both heartbeats and time-to-live (TTL) values are used in this work based on
the logic from the Vargas et al. [17] version of the algorithm for a failure detector
on ADD channels. In that algorithm, heartbeats are used to keep track of the
distance of a message across the network. This heartbeat will eventually fade
out when a process fails. TTL values are then used to track the intensity level
of a message such that as messages travel through the network, the intensity de-
creases. TTLs are commonly used in networking to limit the lifetime of message
packets [11].

2.4 Group Membership and Clustering

Group Membership is a similar but separate problem from Consensus. The value
that must be agreed upon, group membership, is allowed to change due to asyn-
chronous failures, and nonfaulty processes may be removed when they are erro-
neously suspected to have crashed. Techniques used to circumvent the impossi-
bility of Consensus can also be applied to solve the Group Membership Problem
[2]. Group membership can be used to generate clusters based on various prop-
erties. An unreliable failure detector can be used to generate these groups. Many
algorithms can be used to form clusters statically [9].
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2.5 Superpositioning

Superpositioning is a general technique for structuring complex algorithms by
decomposing these algorithms into distinct layers [1]. In the context of action
systems, as used in this paper, each layer augments the layers below with new
features (actions and variables) while preserving the functional properties of
those lower layers [4]. In order for this preservation of functional correctness to
hold, however, the superpositioning of actions and variables must be done in a
disciplined way. In particular, while actions introduced in higher layers can use
(read) the values of variables from lower layers, they must not modify (write)
these variables. Any variables introduced in a layer, on the other hand, can be
both read and written by actions within that layer. This approach allows for
a separation of concerns. Each layer can make use of the services provided by
lower layers in order to implement some new functionality. That functionality, in
turn, is available to higher layers that respect the discipline of superpositioning.

3 Algorithm

3.1 Overview

The following algorithm solves ♢P using a two-level hierarchical version of the
Vargas et al. [17] ♢P algorithm. In this new hierarchical version of the algorithm,
the network is categorized into mutually exclusive clusters that form the first
level of the hierarchy. Each cluster has a single leader and the set of leaders
form the top level of the hierarchy. Each cluster in the network can then be
conceptualized as a single node, and ♢P is solved between this collection of
nodes. Additionally, ♢P is solved locally within clusters.

The clusters described for this algorithm must be constructed deliberately
for the algorithm to work. The construction of these clusters is described here
but not implemented in the pseudocode. The clusters must have the following
characteristics: (1) Each cluster has a single leader (2) Each node is either a
leader or a cluster node that is assigned to a single leader (3) The entire cluster
must be connected using nodes only in the current cluster- that is, it remains
connected if all other nodes are removed.

3.2 Description

Cluster nodes communicate information to other nodes in their cluster using
a variable called cluster HB bag, which contains heartbeat and TTL informa-
tion for their cluster only. These cluster nodes also forward information across
an overlay network to and from their leader and their neighbors. Leader nodes
participate in both the cluster-level and network-level failure detection. They
consolidate failure information from their cluster and pass along heartbeat in-
formation about other clusters to the leaders. They also update their cluster on
the rest of the network through the overlay network messages. In addition to the
algorithms for failure detection, a leader election algorithm occurs when a leader
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node has been suspected of failing by one of the nodes in its cluster. The leader
election algorithm determines a new leader for a particular cluster. If a cluster
has been partitioned, the leader election algorithm will result in one additional
leader. The new leader information must also be propagated to all other nodes
in the network.

3.3 Layers of Superpositioning

The algorithm presented in this section is constructed in layers rather than as
one large algorithm. Some of these layers run on the same nodes, but they are
presented in this way to organize the tasks for the heartbeat algorithm separated
for the overlay network and clustering requirements. To prove that these layers do
not negatively interfere with each other, superpositioning is used. To guarantee
the safety properties of the lower levels, lower levels cannot read variables that
are written at a higher level. Variables in lower levels of the algorithm also
guard higher levels against performing tasks and can trigger actions to occur.
For example, a cluster node that becomes separated from its assigned leader will
trigger the leader election layer to run. Fig. 1 illustrates the five layers of the
algorithm including where the shared variables originate and are used in higher
layers.

Layer Name Variables Defined Variables Accessed

2. Forwarding Overlay

1. Heartbeat - Leader

3. Leader Notification

4. Leader Election

5. Heartbeat - cluster

leader

leaders, leader clusters cluster, leader

cluster, cluster suspect

cluster, cluster suspect,

leaders, leader clusters

cluster, leader clusters

cluster, cluster suspect

Fig. 1: Algorithm Layering and Shared Variables

3.4 Layer 1: Heartbeat - Leader

The top layer of this algorithm, the heartbeat running on leaders, is the primary
method of achieving ♢P. The overlay network running on the layer below allows
this layer to be abstracted as running on leaders that are directly connected
without cluster nodes in between. Information is sent and received by leaders
using messages that are composed of sets of three-tuples. A single three-tuple
includes heartbeat information about the leader plus a simple suspect list com-
posed of only true and false values comprising the information about that
leader’s cluster. The set of three-tuples relays heartbeat information about the
entire network. This algorithm updates the suspect list for leader nodes, which
stores the status of every other node in the network and is thus the primary
data structure in the proof of ♢P for leader nodes. Algorithm 1 contains the
pseudocode for this layer.
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Algorithm 1 Heartbeat - Leader Leader Node p

Constants:

1: T, n, neighbors

Variables:

2: leader clusters, leaders
3: leader bag, cluster suspect, cluster
4: clock()← 1
5: for each i in Π do
6: suspect[i]← false
7: end for
8: for each i in leaders do
9: leader lastHB[i] = 0
10: leader timeout[i] = T
11: leader TTL[i]← 1
12: end for

Information Send

13: every T units of time of clock()
14: begin:
15: leader bag ← {(p, |leaders| −

1, cluster suspect)}
16: for each i ∈ leaders \ {p} do
17: if leader TTL[i] > 1 then
18: external cluster suspect ←

GET CLUSTER SUSPECT (i,
leader clusters)

19: leader bag ← leader bag
∪ {(i, leader TTL[i] − 1,
external cluster suspect)}

20: end if
21: end for

22: for each q ∈ neighbors \ cluster do
▷ send to non-cluster neighbors

23: send(< leader bag >) to q
24: end for

25: for each q ∈ neighbors ∩ cluster do
▷ send to cluster neighbors

26: is outgoing ← true
27: TLL← |cluster| − 1
28: send(< leader bag, TTL,

is outgoing >) to q
29: end for
30: end

Information Receive

31: upon receiving < lead bag, TTL,
is outgoing > from q ∈ cluster

32: begin:

33: if not(is outgoing) then
34: for each (r,m, array) ∈ lead bag

such that r /∈ neighbors \ {q} do
35: if leader TTL[r] ≤ m then
36: leader TTL[r]← m
37: for each node ∈ leader clusters.get(r)

do
38: suspect[node]← array[node]
39: end for
40: if suspect[r] = true then
41: suspect[r]← false
42: ESTIMATE TIMEOUT (r)
43: end if
44: leader lastHB[r]← clock()
45: end if
46: end for
47: end if
48: end

49: upon receiving < lead bag > from
q /∈ cluster

50: begin:
51: ▷ Begin from line 34
52: end

53: procedure estimate timeout(r)
54: if r ∈ leaders then
55: leader timeout[r] ← 2 ·

leader timeout[r]
56: end if
57: end procedure

58: procedure get cluster suspect(r,
leader clusters)

59: current cluster ← leader clusters.get(r)
60: j ← 0
61: for each i ∈ current cluster do
62: array[j]← suspect[i]
63: j ← j + 1
64: end for
65: return array
66: end procedure

Leader Timeout

66: when leader timeout[q] = clock() −
leader lastHB[q]

67: begin:
68: suspect[q]← true
69: end
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3.5 Layer 2: Overlay Network Message Forwarding

The next layer of this algorithm is the overlay network layer, which transfers
information between leader nodes through the cluster nodes. This layer runs
only on cluster nodes. The basic structure of the overlay network is to forward
messages by broadcasting information to neighbors each heartbeat. Neighbors
within the current node’s cluster also receive information about whether the
current message is incoming or outgoing. Outgoing messages are those that orig-
inated from the current node’s leader and will thus be ignored by the leader.
Cluster nodes will also update their local suspect list using information from
outgoing messages if they are more recent than the current information. For
cluster nodes, this suspect list is used to store the status information of every
other node in the network and is thus the primary data structure in the proof
of ♢P for cluster nodes. The detailed pseudocode for this algorithm is included
in the Appendix.

Algorithm 2 Forwarding Overlay Cluster Node p

Constants:

1: T, n, neighbors

Variables:

2: clock()← 1
3: leader clusters, cluster
4: for each i in Π do
5: suspect[i]← false ▷ suspect list for entire network
6: end for
7: FORWARD MESSAGES(leader clusters, cluster)

3.6 Layer 3: Leader Notification

A cluster may become partitioned due to failures in the network. When this oc-
curs, a new leader will be elected for one of the halves of the partitioned cluster.
When a new leader is elected due to a partitioned cluster, this algorithm spreads
that information to existing leader nodes. This allows the leader heartbeat al-
gorithm to accurately update the information from leaders about their clusters.
The detailed pseudocode for this algorithm is included in the Appendix.

Algorithm 3 Leader Notification Cluster Node p

Variables:

1: clock()← 1
2: leaders, leader clusters, cluster, leader
3: if leader changes then
4: leaders, leader clusters← ALERT (cluster, leader)
5: end if
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3.7 Layer 4: Leader Election

The leader election layer of the algorithm performs a basic leader election for a
single cluster when the leader fails or the cluster is partitioned. Both of these
actions require the addition of a new leader in the algorithm. The pseudocode for
the leader election algorithm on ADD channels has been constructed previously
[16] and is not included here. The triggering of a new leader election action is
guarded by information from the layer below.

Algorithm 4 Leader Election Node p

Constants:

1: T, n, neighbors

Variables:

2: clock()← 1
3: leader, cluster, cluster suspect

4: if cluster suspect[leader] then
5: leader ← Ω(cluster)
6: end if

3.8 Layer 5: Heartbeat - Cluster

The bottom layer of this algorithm is the heartbeat ♢P algorithm within clusters.
It is running on every node and updates cluster-level suspect information. The
logic of this layer is separated based on if the current node is a leader or not.
Information from other clusters is not transferred in this layer. Cluster-level
information that is transferred by leaders is updated in this level. Cluster-level
suspect information is used to inform the shared cluster variable.

Algorithm 5 Heartbeat - Cluster: Cluster Node p

Constants:

1: T, n, neighbors

Variables:

2: clock()← 1, cluster, cluster bag
3: for each i in cluster do
4: cluster lastHB[i] = 0
5: cluster suspect[i]← false
6: cluster timeout[i] = T
7: cluster TTL[i]← 1
8: end for

Cluster Send

9: every T units of time of clock()

10: begin:
11: cluster bag ← {(p, |cluster| − 1)}
12: for each i ∈ cluster \ {p} do
13: if cluster suspect[i] = false and

cluster TTL[i] > 1 then
14: cluster bag ← cluster bag ∪
{(i, cluster TTL[i]− 1)}

15: end if
16: end for
17: for each q ∈ neighbors ∩ cluster do
18: send(< cluster bag >) to q
19: end for
20: end
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Cluster Receive

21: upon receiving < gr bag > from q ∈
cluster

22: begin:
23: for each (r,m) ∈ gr bag such that

r /∈ neighbors \ {q} do
24: if cluster TTL[r] ≤ m then
25: cluster TTL[r]← m
26: if cluster suspect[r] = true

then
27: cluster suspect[r]← false
28: ESTIMATE TIMEOUT [r]
29: end if
30: cluster lastHB[r]← clock()
31: end if
32: end for

33: end

34: procedure estimate timeout(r)
35: cluster timeout[r] ← 2 ·

cluster timeout[r]
36: end procedure

Timeout

36: when cluster timeout[q] = clock() −
cluster lastHB[q]

37: begin:
38: cluster suspect[q]← true
39: end

Algorithm 6 Heartbeat - Cluster: Leader Node p

Constants:

1: T, n, neighbors

Variables:

2: clock()← 1
3: cluster, cluster bag
4: for each i in cluster do
5: cluster lastHB[i] = 0
6: cluster suspect[i]← false ▷

suspect list for cluster only
7: cluster timeout[i] = T
8: cluster TTL[i]← 1
9: end for

Cluster Send

10: every T units of time of clock()

11: begin:
12: cluster bag ← {(p, |cluster| − 1)}
13: for each i ∈ cluster \ {p} do ▷ only

include the cluster members
14: if cluster suspect[i] = false and

TTL[i] > 1 then
15: cluster bag ← cluster bag ∪
{(i, TTL[i]− 1)}

16: end if
17: end for
18: for each q ∈ neighbors ∩ cluster do

▷ only send to neighbors in cluster
19: send(< cluster bag >) to q
20: end for
21: end
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Cluster Receive

22: upon receiving < gr bag > from q ∈
cluster

23: begin: ▷ receive from a cluster
member

24: for each (r,m) ∈ gr bag such that
r /∈ neighbors \ {q} do

25: if TTL[r] ≤ m then
26: TTL[r]← m
27: if cluster suspect[r] = true

then
28: cluster suspect[r]← false
29: ESTIMATE TIMEOUT [r]
30: end if
31: cluster lastHB[r]← clock()
32: end if
33: end for

34: end

35: procedure estimate timeout(r)
36: if r ∈ cluster then
37: cluster timeout[r] ← 2 ·

cluster timeout[r]
38: end if
39: end procedure

Timeout

66: when cluster timeout[q] = clock() −
cluster lastHB[q]

67: begin:
68: cluster suspect[q]← true
69: end

4 Overlay Network

4.1 The Network Graph G(tϵ)

The proof of ♢P will be constructed on the arbitrary network graph G after some
point in time after all failures have occurred. Graph G at some time t is defined as
G(t) = (correct(α, t), E′) with E′ = {(u, v)|(u, v) ∈ E and u, v ∈ correct(α, t)}.
Now define tf to be the earliest time when all the failures in α have occurred.
We must now show that after time tf the graph G will no longer change, and
all messages from failed processes cease to circulate.

Lemma 1. The graph G has the following properties.

1. G(t) = G(t′) for all t, t′ ≥ tf

2. There is a time tϵ ≥ tf after which the last message from the set of crashed
processes is delivered to a correct process.

Proof. Let Π be the set of all nodes in the network.
Part One: By construction, at time tf all failures have occurred. Now it must be
the case that crashed(α, t) = crashed(α, t′) for all t, t′ ≥ tf . Since correct(α, t) =
Π \ crashed(α, t), then by the definition of G(t) it is true that G(t) = G(t′) for
all t, t′ ≥ tf .

Part Two: The algorithm described in this work has two separate node
types: leader nodes and cluster nodes. Every faulty leader clearly sends a finite
number of heartbeat messages before crashing. Then, by the properties of the
ADD channel, these messages are lost, delivered or experience arbitrary delays.
Thus there exists a time tϵ ≥ tf after which the last message sent by the set of
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faulty leader processes is delivered. Cluster nodes also send a finite number of
heartbeat messages and the proof applies by the same argument. Cluster nodes
also forward messages to and from other nodes. Each of these messages are
bounded by a timeout value by construction and thus will stop being forwarded
in some finite amount of time. Now it is clear that for both leader and cluster
nodes, there exists a time tϵ ≥ tf after which the last message sent by the set of
faulty leader processes is delivered.

From this point we will assume that we have reached time tϵ such that all fail-
ures have occurred and all messages from failed nodes have finished circulating
through the network. Similarly, all references to graph G from this point on refer
to some time after tϵ. https://www.overleaf.com/project/61dde39fc5e336dabd0727fe

The Overlay Network G′ In this section we will now define a graph G′. In
particular, we will show that G is an implementation of the model G′.

To define G′, consider the model for a network defined by Vargas et al. [17]
defining a set of processes Π = {1, 2, ..., n} connected by ADD channels in both
directions and represented an undirected graph G′ = (V,E) where V = Π. This
network consists of channels and processes.

Channels The channels in this model are ADD channels, meaning they satisfy
the definition from [15].

Processes Processes may fail only by crashing. Given an execution α, a pro-
cess p is said to crash at time t if p does not perform any event inα after time
t and crashed(α, t) is the set of all processes that have crashed by time t. A
process p is correct at time t if p has not crashed by time t and correct(α, t) =
Π \ crashed(α, t).

We will define a relation from the overlay network in the algorithm to the
underlying network. The following section will demonstrate how the overlay net-
work can be viewed as an implementation of the underlying network.

4.2 Overlay Network Relation

Consider the topology of the network defined in the ♢P with clusters algorithm
in this paper. We will show that this graph topology can be considered an im-
plementation of the underlying network defined using ADD channels.

Recall that the network is partitioned into distinct, connected clusters, each
with a single leader. Consider each cluster as a single node with the same con-
nections to other clusters as the original topology, but as a single connection. A
representation of the connection from the network to the abstract view of the
network is shown in Fig. 2 and Fig. 3. The following sections will prove that this
abstraction results in a network with ADD channel properties.
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p0 p1 p2 p3 p4

p5 p6 p7 p8 p9

p10 p11 p12 p13 p14

p15 p16 p17 p18 p19

Fig. 2: Network Topology Over-
lay, G

p′2

p′5

p′14

p′16

Fig. 3: Network Topology, G’

5 Proof of ♢P

5.1 Proof Outline

The proof of ♢P for this algorithm is based on two parts:

1. A proof that this algorithm is an implementation of the abstraction con-
structed by Vargas et al. [17], represented by the graph G′

2. The proof of ♢P by Vargas et al. [17] on graph G′

The rest of this section concerns part one only. The proof of ♢P follows from
part one and Vargas et al. [17].

5.2 Proof of Overlay Network Model

This section concerns G′, which is a graph of edges and nodes. The proof that
the overlay network forms an abstraction between the network of leaders and
the underlying network requires proving two things: that the edges of G′ still
satisfy the properties of ADD channels and that the nodes of G′ still operate
and fail in the correct way. In particular, this proof concerns the graph G′ after
some time tϵ.

Edges - ADD Channel An ADD channel from p to q has associated constants
K, D, such that the following properties are satisfied:

1. The channel does not create, modify, or duplicate messages

2. For every K consecutive messages sent by p to q, at least one is delivered to
q within time D
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Property 1 The first property of the overlay network that the implemen-
tation must satisfy is that the channel does not create, modify, or duplicate
messages. The channels in the network topology will be modeled to not modify
or duplicate messages, even though the underlying implementation does not fit
these requirements. The overlay network modifies incoming messages by adding
a TTL, but this value is removed when the message is relayed to the cluster
leader, so we can model the network as one that does not modify the messages.
The overlay network also allows duplicate messages because any new incoming
message from outside or within the cluster will be broadcast to every neighbor
in the cluster. However, these messages are labeled with a unique identifier, so
if duplicates arrive at the leader, they can be ignored, and the model preserves
the no-duplicates property.

Property 2 We must also show that for every K consecutive messages sent
by p to q, at least one is delivered to q within time D. Without loss of generality,
we will consider messages from leader 1, ℓ1, to leader 2, ℓ2. Let the path from
ℓ1 to ℓ2 be ℓ1, p1, p2, ..., pn, ℓ2. Now, each p is a node in an overlay network or
is a cluster, which can be abstracted as a single leader node. Since each channel
along this path is an ADD channel, there exists some Ki, Di for each i along the
path from ℓ1 to ℓ2. Now, a message from ℓ1 is guaranteed to be received by ℓ2 by
the Kth consecutive message where K is: K = Πn

i=0Ki. Similarly, this message
will be delivered within time D where D is: D = Πn

i=0Di.

Nodes - Cluster Model To match the underlying network, each cluster must
be modeled by a single node. Clusters are running both a ♢P algorithm and
a transmission network to transfer information. The overlay network must cor-
rectly transfer information from the edge of the cluster to the leader and back.
The path must also be limited to cluster members only. The TTL of these mes-
sages guarantees that they will not survive past the length of the longest path
of unique nodes in the cluster. Messages are broadcasted to and from nodes,
so they are guaranteed to reach the leader and then back to the edge nodes.
Incoming and outgoing messages are separated so that information coming from
outside the cluster does not leave the cluster without modification. The primary
requirement to show is that leaders have correct information that can then be
sent through the overlay network to other leaders. The proof of correctness for
the underlying ♢P algorithm applies directly to within-cluster communication.
Finally, failures that cause clusters to no longer be connected or no longer have a
functioning leader result in the construction of new clusters. These new clusters
must be connected and have a leader, thus the model of the overlay network
always remains consistent with the underlying network.

5.3 ♢ P

The Vargas et al. [17] proof of correctness for ♢P now applies to the network G′

at time tϵ after all failures have occurred. Now, since G is an implementation of
the G′ abstract model, the proof of ♢P for the arbitrary network running the
algorithm is complete.
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6 Complexity

The size complexity of this algorithm is calculated based on the size and number
of messages sent in the network for a single heartbeat. The following equation
represents that value, where E represents the number of edges in the graph, E′

is the number of edges within clusters, n is the number of nodes, and ℓ is the
number of leaders:

O(E′ · n
ℓ
log n) +O(E(n+ ℓ · log n)) (1)

These two terms are separated based on the complexity at both hierarchy
levels. The first term is the complexity of the heartbeat algorithm within clus-
ters. The second term is the complexity of the leader-level heartbeat algorithm
including the overlay network.

1. Cluster Heartbeat: The sum over each cluster node of the degree of the node
times the (worst case) size of its HB bag. The size of this variable is a (log n)
encoding times the size of the cluster, sent to every neighbor.

2. Leader Heartbeat and Forwarding: A message including the HB lead bag

(size number of leaders times log n) plus an array of size n with the status
(1 or 0) of every node in the network, sent across every edge in the network
two times.

In order to minimize the complexity, the leader size must be chosen. At the
extremes, which includes having each node as a leader and having no leaders, the
complexity of the algorithm with clusters does not improve from O(E · n log n).
The complexity of the algorithm with clusters is reduced to O(En) when the
number of leaders is chosen to be log n,

√
n or any number of other values.

6.1 Leader Election Complexity

An additional aspect of the complexity of this algorithm is the leader election
that occurs upon the failure of a leader node. The complexity of this algorithm
would be a maximum of O(E · log n) [13]. Thus this additional cost does not
impact the overall message size complexity of this algorithm.

7 Experimental Results

In order to measure the expected-case behavior of our cluster-based ♢P algo-
rithm, a simulation was conducted over a variety of network topologies and
failure modes [18]. Since the message space complexity can be calculated an-
alytically (see previous section), this simulation focussed on the relative delay
in convergence to an accurate suspect list in ♢P. The links between nodes are
assumed to be ADD channels with identical delay and drop characteristics, so
the convergence time is reported in number of heartbeats. Topologies considered
range from a single chain at one extreme to a fully connected graph on the other.
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Table 1 compares the convergence times for the original and cluster-based
algorithms on a variety of topologies. Each topology has 100 nodes. Three dif-
ferent scenarios were tested with each topology: one node suspecting one other
node, every node suspecting one node, and every node suspecting every other
node.

Table 1: Heartbeats Until Convergence

Network Leaders
Average Original Algorithm Cluster Algorithm
Degree 1-1/M-1/M-M 1-1/M-1/M-M

Chain 5 .99 223/223/295 98/98/122
Chain 10 .99 223/223/295 50/50/62
Chain 15 .99 223/223/295 38/38/44

Chain Conn. Clusters 5 3.09 1/4/4 3/8/8
Chain Conn. Clusters 10 1.54 1/4/4 3/8/8
Chain Conn. Clusters 15 1.27 1/4/4 3/8/8
Fully Conn. Clusters 5 42 4/4/4 6/6/6
Fully Conn. Clusters 10 9.5 4/4/4 6/6/6
Fully Conn. Clusters 15 8.5 4/4/4 6/6/6
Fully Conn. Leaders 5 4.5 1/4/4 3/5/14
Fully Conn. Leaders 10 3.25 1/4/4 3/17/29
Fully Conn. Leaders 15 3.07 1/4/4 3/5/44

Average Connectedness 5 3.2 1/4/4 3/5/14
Average Connectedness 10 3.1 1/4/4 3/17/29
Average Connectedness 15 3.07 1/4/4 3/5/44

Fully Connected 5 49.5 1/1/3 3/5/5
Fully Connected 10 49.5 1/1/3 3/5/5
Fully Connected 15 49.5 1/1/3 3/5/5

The time to convergence is similar for both algorithms. The cluster-based
algorithm performs better for sparsely connected graphs with large diameter. For
densely connected graphs, the original algorithm’s advantage diminishes with the
number of erroneous suspicions.

8 Conclusion

This paper demonstrates a modification and improvement upon a previous im-
plementation of an eventually perfect failure detector on ADD channels based
on a hierarchical, cluster-based overlay network and superpositioning. This al-
gorithm demonstrates a reduction in the message size complexity of the best
previous implementation of ♢ P of complexity O(E ·n log n) down to complexity
O(En). Additionally, a simulation demonstrates a similar time to convergence
for the cluster-based algorithm compared to the previous implementation. This
convergence time was tested using a variety of network topologies. Future work
could be done to expand the hierarchy of this algorithm to more than two levels
to further improve the message complexity size.
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Appendix

Algorithm 7 Transmit Leader Information Node p

1: procedure ALERT
2: every T units of time of clock()
3: begin:
4: ▷ Where ADD Transmit is the link level reliable transmission of information
5: ADD TRANSMIT (cluster, leader)
6: end
7: end procedure
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Algorithm 8 Transmit Messages Cluster Node p

1: procedure FORWARD MESSAGES
2: upon receiving < leader bag, TTL,

is outgoing > from q ∈ cluster
3: begin:
4: local leader bag ← leader bag
5: UPDATE SUSPECT (leader bag)
6: end

7: every T units of time of clock()
8: begin:
9: ▷ Send to other clusters
10: if is outgoing then ▷ send outgo-

ing information to non-cluster neigh-
bors

11: for each q ∈ neighbors \ cluster
do

12: send(< local leader bag >) to
q

13: end for
14: end if
15: end
16: ▷ Within-cluster Send/Receive
17: every T units of time of clock()
18: begin:
19: if TTL > 1 then ▷ Transfer

incoming and outgoing information to
other cluster members

20: for each q ∈ neighbors ∩ cluster
do ▷ only send to neighbors in cluster

21: send(< leader bag, TTL −
1, is outgoing >) to q

22: end for
23: end if
24: end

25: ▷ Receive from other clusters
26: upon receiving < leader bag >

from q /∈ cluster
27: begin:
28: for each q ∈ neighbors ∩ cluster

do
29: is outgoing ← false
30: TTL← |cluster| − 1
31: message ← leader bag, TTL,

is outgoing
32: end for
33: end

34: every T units of time of clock()
35: begin:
36: for each q ∈ neighbors ∩ cluster

do
37: send(< message >) to q
38: end for
39: end
40: end procedure

41: ▷ Create local copy of suspect list
42: procedure update suspect(leader bag)
43: for each (r,m, array) ∈ leader bag do
44: if leader TTL[r] ≤ m then
45: leader TTL[r]← m
46: for each node ∈ leader clusters.get(r) do
47: suspect[node]← array[node]
48: end for
49: if suspect[r] = true then
50: suspect[r]← false
51: ESTIMATE TIMEOUT (r)
52: end if
53: leader lastHB[r]← clock()
54: end if
55: end for
56: end procedure
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