A Verified Integration of Parallel Programming Paradigms
in CC++*

Paolo A.G. Sivilotti
Computer Science Department
California Institute of Technology
Pasadena, California, 91125, USA

paolo@vlsi.cs.caltech.edu

Abstract

CC++ s an object-oriented parallel programming
language that uses parallel composition, atomic func-
tions, and single-assignment variables to express con-
currency. We show that this programming paradigm is
equivalent to several traditional imperative communi-
cation and synchronization models, namely monitors
and asynchronous channels. Furthermore, the object-
ortented nature of CC++ provides an ideal framework
for integrating these paradigms. We specify, imple-
ment, and formally verify a collection of libraries that
integrates these traditional models with CC++.

1 Introduction

Many communication and synchronization primi-
tives have been developed to express parallelism in
user programs. Most of these constructs can be shown
to be equivalent in expressive power. This equivalence
result is sometimes seen to support the view that it
is sufficient to provide any one paradigm in a paral-
lel programming language. Our work is motivated by
the observation that the integration of more than one
paradigm in a programming language is desirable, de-
spite the equivalence result. That is, a programmer
might wish to use a particular set of primitives based
on concerns other than expressiveness. For example:

Flexibility: one particular methodology is often
most appropriate for a given problem instance.

Facility: a single problem instance might lend itself
to a decomposition in which different components
are expressed using different paradigms.

Familiarity: programmers often become comfortable
with a particular methodology. Their experience

*This work was supported in part by Air Force Office of
Scientific Research grant AFOSR-91-0070.

with that methodology is an important asset, and
they should have the opportunity to use it.

Portability: it should be possible to easily upgrade
existing code to a new language without paying
the penalty of excessive code modification.

Therefore, it is useful for a parallel programming lan-
guage to support and integrate a variety of styles and
methodologies.

Single-assignment variables can be used as a mech-
anism for communication and synchronization among
concurrent processes. Single-assignment variables can
be seen as delayed-assignment constants. Such a vari-
able is initially undefined, and it can be written to
(or defined) at most once. A subsequent attempt to
write to the variable is a run-time error. If a process
attempts to read a single-assignment variable that has
not yet been defined, that process suspends until the
variable becomes defined [4, Section 2.1].

We demonstrate that this single-assignment para-
digm is consistent with traditional imperative com-
munication and synchronization schemes, and further-
more that CC++ [3, 8] — an object-oriented language
based on C++ that incorporates single-assignment
variables, atomic functions, and parallel composition
— can support and seamlessly integrate these schemes
with object-orientation. This support and integration
is demonstrated by providing a collection of generic
libraries whose correctness is formally verified.

Libraries, rather than language extensions, are used
to provide this support, so that new compilers need not
be developed. Support and integration at this level
is facilitated by the powerful abstraction techniques,
such as generic classes and inheritance, provided by
C++. Hence, object-orientation plays a key role in
the effectiveness of the integration.

Section 3 of this paper is a brief summary of the
CCH++ programming language. Section 4 describes
a monitor library—its specification, an outline of the

design and formal verification, and an example of its
use. Section 5 contains a similar description of an
asynchronous channel library. Section 6 concludes and

summarizes the results.

2 Related Work

The integration of communication and synchroniza-
tion paradigms has been explored in many contexts.
The SR language (Synchronizing Resources) devel-
oped by Andrews [1, Section 10.4] permits concur-
rent processes to communicate and synchronize using
shared variables, semaphores, asynchronous message
passing, RPC, and rendezvous, as does StarMod [5].
The unique aspects of our work are the integration
of these paradigms within the framework of object-
orientation, and the assertional verification of the im-
plementation at the level of the code itself.

3 The CC++ Language

CC++ is a parallel object-oriented programming
language based on CH++. It makes use of single-
assignment variables, atomic functions, and parallel
composition to express and control concurrency. The
following two CC++ constructs (used in the monitor
and asynchronous channel libraries) control synchro-
nization and interleaving;:

sync: a single-assignment object.

atomic: a function whose statements are not inter-
leaved with statements that are not part of the
function. Atomic functions must not suspend and
must terminate.

The example programs use the following constructs
contained in the language for expressing parallelism:

par: a block of statements that are executed in paral-
lel. The block terminates only when all its state-
ments have terminated.

parfor: a loop whose iterations are executed in par-
allel. The loop terminates only when all its iter-
ations have terminated.

For a complete description of these constructs, refer

to [3] and [8].
4 Monitor Library
4.1 Specification

A monitor [2, 6] is a collection of data and func-
tions that manipulate this data. A monitor provides

synchronization between concurrent processes in two
ways: only one process at a time is permitted to be in-
side a monitor executing any of its member functions,
and processes executing inside the monitor can syn-
chronize by means of special variables called condition
variables. The operation wait() on a condition vari-
able ¢ causes the executing process to be suspended
and placed in a pool of blocked processes associated
with ¢. The signal() operation on condition variable
¢ causes a blocked process associated with ¢ to become
ready to execute. We choose here to allow the signal-
ing process to continue executing inside the monitor.

Monitors guarantee mutual exclusion. Let #enter
be the number of times processes have entered the
monitor (and begun executing) and let #leave be the
number of times they have left the monitor (because
the function being executed either terminated or per-
formed a wait()). The first safety condition is then:

(#enter = #1leave) V (#enter = #leave+ 1) (1)

If every member function of a monitor either termi-
nates or executes a wait, then every function that be-
comes ready to execute is eventually allowed to enter.
Unfortunately, programmers can write functions that
do not terminate. Hence, only a much weaker prop-
erty can be stated. Let #became ready be the number
of processes that became ready to execute (either by
calling a monitor function, or by being reawakened af-
ter a wait()). Then:

#enter = min(#became ready, #leave+ 1) (2)

We distinguish between the two cases for a
signal(): either there is at least one process wait-
ing on the signaled condition variable, or there is
none. In the former case, the signal() is designated
as heard since it causes a process to become ready,
and in the latter case it is designated as ignored since
it has no effect. If the number of waits exceeds the
number of heard signals, then the next signal will be
heard. Initially there are no waiting processes. Thus,
if ¥ = {w,s;, sy} is the alphabet representing the op-
erations wait, ignored signal, and heard signal respec-
tively, and V° € X* is the string of operations that
have been performed on condition variable ¢, then:

ds:se€e L(G): V°<s (3)

where w < z for two strings w and z denotes that w is
a prefix of z and where G is the context-free grammar
defined by the start symbol S, the set 3 of terminals,
and the production rules:

S — SZ'S|BS|€
B — BwBs, | ¢

4.2 Design and Implementation

4.2.1 Mutual Exclusion

The mutual exclusion guaranteed by a monitor (equa-
tion 1) is provided by two member functions, enter ()
and leave(). The enter() function must be placed
at the beginning of every user-defined member func-
tion, and the leave() function must be placed at the
end of every user-defined member function.

The monitor maintains a private queue, Ready, of
processes that are ready to execute, but prevented
from entering by the mutual exclusion requirement.
This queue is simply a collection of pointers to un-
defined sync objects. A process P suspends itself by
creating a new undefined sync object (Figure l-a),
appending a pointer to it on the Ready queue, and
then attempting to read the contents of the sync ob-
ject (Figure 1-b). Eventually, this pointer comes to
the head of the Ready queue (Figure 1-¢) and is de-
queued by an exiting process, Q (Figure 1-d). Process
Q defines the sync object, awakening P (Figure 1-e).
P then deallocates the sync object on which it was
suspended and enters the monitor (Figure 1-f).

(d C) ®

Figure 1: Monitor Ready Queue

4.2.2 Monitor as a Base Class

The concepts of data and function encapsulation of a
monitor are consistent with those of C++ classes. In
addition to the constructs that all monitors share (e.g.
a definition of the condition variable type), a monitor
must contain the particular member functions specific
to its applications. Thus, a particular instantiation of
a monitor will be a superset of the fundamental data
type and function members that all monitors share.
This functionality can be achieved by implementing
the Monitor class as a base class.

4.2.3 Using the Monitor Library

An application that uses this library to implement a
particular monitor must obey the following rules:

1. The user-defined monitor must be derived from
the library monitor.

2. All member data must be private.

3. Every member function must begin with a call
to enter(), and must terminate with a call to
leave(). Thus, the outer block of a monitor
member function must be a sequential block, and
all member functions must be void functions.

The class declaration for the Monitor class is:
class Monitor {
private:
Boolean busy;
Queue<sync int> Ready;
atomic void check busy(sync int x);

protected:
Monitor(void);
void enter(void);
atomic void leave(void);
class Condition
{ public: Queue<sync int> Waiting; };
void wait(Condition&);
void signal(Condition&);

IE
4.3 Verification

4.3.1 State

The state of a monitor is defined by:

1. Whether or not a process is inside the monitor.
The Boolean flag busy is TRUE exactly when a
process is executing inside.

busy < #enter = #leave+ 1 (4)
—busy < #enter = #leave (5)

2. The queue (Ready) of processes that are ready to
execute inside the monitor. The size of this queue
is the difference between the number of processes
that became ready and the number that entered
the monitor.

#enter < #became ready (6)

3. The queues of waiting processes associated with
each condition variable. Let @ be the number
of processes waiting on condition variable ¢ after
k operations on that variable. Initially, the wait
queues are empty, so Q5 = 0. Since each wait(c)

operation appends a process and each signal(c)
operation that is heard removes one, we have:

Ve Ve[>k>0: 0<Qf (7)
Ve Ve >k>1: Qf= V51| {w}
- |Voc..k—1 [{Sh}| (8)

where [is the binary operator that projects a
string and a set of literals into a string consisting
only of those literals in the set.

Since signal()’s on empty queues are always ig-
nored and signal()’s on non-empty queues are
always heard, we have:

VE Ve >k>0: QL=0= Vs, (9)
Ve Ve >k>0: Qf>0= VS #£s;(10)

4.3.2 Property

Maximality of Progress As many processes as
possible will be allowed to enter the monitor, subject
to the constraints of mutual exclusion and of the num-
ber that became ready.

busy V (#enter = #became ready) (11)

4.3.3 Correctness

By annotating the implementation with assertions and
ghost variables, the assertions (4)-(11) can be shown
to be invariantly true [7]. Note that the assertions
need not hold inside of atomic actions, but only at
the beginning and end of such actions. As an exam-
ple, we include the annotation of the 1leave() member
function.

atomic void Monitor::leave(void) {

// ASSERT:

/[busy
/] #enter = #leave+1

/1 (4) - (11)
/] #leave++

// ASSERT:

// busy
/] #leave = #tenter
/1 (6) - (11)

if (Ready.isempty())

// ASSERT:

// busy
/] #leave = #tenter
/] #enter = #became ready

/7 (6) - (11)

busy = FALSE;

// ASSERT:

// — busy
/] #leave = #became ready

/7 (4) - (11)
else

// ASSERT:

// busy
/] #leave = Ftenter
/] #enter < #became ready

/1 (6) - (11)

*(Ready.dequeue()) = SET;
/] #enter++

// ASSERT:

// busy
/] #leave < #became ready

/1 (4) - (11)

Now the conjunction of the specifications (1)-(3)
follows from the conjunction of these invariants. For
example, (2) can be shown to follow from (4), (5), (6),
and (11).

TRUE
& {by4and11 }
(#enter = #became_ready) V (#enter = #leave + 1)
& { property of min, and by 4, 5, and 6 }
(#enter > min(#became _ready, #leave + 1)) A
(#enter < #became_ready) A (#enter < #leave + 1)
& { property of min }
(#enter > min(#became _ready, #leave + 1)) A
(#enter < min(#became_ready, #leave + 1))
=3 { antisymmetry of < }

#enter = min(#became ready, #leave + 1) []

Similarly, (1) follows directly from (4) and (5), and
(3) follows from (7) - (10) [7].

4.4 Example Program

Problem Description Producer processes deposit
messages into a finite buffer, and consumer processes
remove them. A producer may deposit a message if
there is at least one empty slot. A consumer may
remove a message if there is at least one full slot. De-
posits and removals must be mutually exclusive to pre-
serve the integrity of the buffer.

class BoundedBuffer : private Monitor {
private:
int size;
char xBuf;
int nextin, nextout, fullcnt;
Condition notempty, notfull;

public:
BoundedBuffer(int n) {
size = n;
Buf = new char|[size];
fullent = 0;
nextin = 0;
nextout = 0;

}

void deposit (char data) {
enter();
while (fullcnt == size) wait(notfull);
Buf[nextin] = data;
nextin = (nextin+1)%size;
fullent = fullent+1;

signal(notempty);
leave();
}
void remove (char &data) {
enter();
while (fullcnt == 0) wait(notempty);

data = Buf[nextout];
nextout = (nextout—}—l)%size;
fullent = fullent-1;
signal(notfull);

leave();

}
g

Discussion The usual C++ mechanism of inheri-
tance is used to create a monitor. Each monitor func-
tion begins with a call to enter() and ends with a
call to leave(). Data members are private and are
initialized in the usual manner by the constructor. A
reference parameter is used to return a value from the
remove () monitor function, because of the void func-
tion restriction.

5 Asynchronous Channel Library
5.1 Specification

An asynchronous channel is a first-in-first-out
message-passing buffer. Two operations are defined
on such a channel. The nonblockingSend() opera-
tion places a message in the buffer. It never suspends.
The blockingReceive() operation removes the next
message from the buffer. If there is no message to be
removed, this operation suspends until there is such a
message. The channel can be used by arbitrary and
varying numbers of producers and consumers.

Since the blockingReceive() operation can sus-
pend, it is not atomic, and we distinguish between the
initiation and the termination of this operation. Let
iR be the number of blockingReceive() operations
that have been initiated, and let cR be the number of
blockingReceive() operations that have completed.

Since the nonblockingSend () operation is atomic, no
such distinction is required, and we define ¢S to be the
number of completed nonblockingSend() operations.
The first safety condition is that as many block-
ingReceive() operations as possible have completed,
subject to the constraints of the number of initiated
blockingReceive() operations and the number of
completed nonblockingSend() operations.

cR = min(iR, cS) (12)

Another safety condition is that the channel deliv-
ers the messages in FIFO order. Let the sequence of
messages sent on the channel be sy, s(1), .-, S(cS-1);
and let the sequence of messages received on the chan-
nel be rg), r(1), ..., ¥(cR-1)- The k'™ message received

is the k'” message sent.
Vk:0<k<cR: T(k) = S(k) (13)
5.2 Design and Implementation

5.2.1 Asynchronous Channel as a Class

An asynchronous channel is implemented as a CC++
class. It stores the sent messages that have not yet
been received in a private queue, Undelivered. The
class has two public member functions: nonblock-
ingSend() and blockingReceive(). The nonblock-
ingSend() member function is atomic so that it can
safely manipulate the Undelivered queue. The class
also contains a queue, EmptySlots, to keep track of
the suspended blockingReceive() operations.

The channel implementation is general enough to
permit any object, including user-defined structures,
to be sent as a message. This generality is achieved
(without sacrificing the benefits of type-checking) by
using templates.

5.2.2 Messages and Slots

Producers send messages on the channel and con-
sumers give empty slots to the channel. A consumer
waits for the slot to become full, and then processes
the message in the slot. Slots are implemented as sync
pointers. An empty slot is an undefined sync pointer.
A full slot is a sync pointer that has been defined. The
pointer points to the message contained in the slot.

A blockingReceive() operation begins by creat-
ing a slot for a message. If there is an undelivered
message, the slot is filled and the operation terminates.
If there is no such message, the slot is added to a queue
of such slots, the EmptySlots queue. The blocking-
Receive() operation then suspends on the contents of
this slot.

A nonblockingSend() operation begins by making
a copy of the message being sent. If there are any sus-
pended blockingReceive() operations, the first ele-
ment of EmptySlots is dequeued and the sync pointer
of the slot is defined to point to the message copy. If
there are none, the message copy is appended to a
queue of undelivered messages, Undelivered.

The class declaration for the asynchronous channel

class is:
template <class Message>
class AChannel {
private:
Queue <Message * sync> EmptySlots;
Queue <Message> Undelivered;
atomic void giveslot (Message * sync *);

public:
atomic void nonblockingSend (const Message &);
Message * blockingReceive(void);

s
5.3 Verification

5.3.1 State
The state of an asynchronous channel is given by:

1. A queue of empty slots called EmptySlots. The
number of elements in this queue, #EmptySlots,
is the number of blockingReceive() operations
that have been initiated, but have not yet com-
pleted.

#EmptySlots = iR — cR (14)

Empty slots are placed in this queue in order.
Vj:0<j< #EmptySlots:
EmptySlots(j] = r(; cn) (15)

where EmptySlots[j] is the (j + 1)'* element of
EmptySlots.

2. A queue of undelivered messages called Undeliv-
ered. Let the number of elements in this queue be
#Undelivered. Since each completed nonblock-
ingSend() either adds a message to this queue or
allows a blockingReceive() operation to com-
plete, we have:

#Undelivered = cS — cR (16)

Undelivered messages are placed in this queue in
order.

V7 :0<j < #Undelivered:
Undelivered|j] = s(; cR (17

where Undelivered[j] is the (j + 1)!* element of
Undelivered.

5.3.2 Properties

Boundedness Requirement. The number of
blockingReceive() operations that can complete is
bounded by the number of nonblockingSend() oper-

ations that have completed.

cR <cS (18)

The Set of Suspended Processes is Minimal. A
process can be suspended only if its completion would
violate the safety condition given by (12).

(#EmptySlots = 0) V (#Undelivered = 0) (19)

Ordering Requirement. The value returned by
the (k + 1)** blockingReceive() points to the mes-
sage contained in the (k 4 1)'* slot. Let slot(j) be
the message contained in the (k + 1)'* slot.

Vk:0 <k <cR:rgp)=sloty) (20)
The (k + 1)** message sent is put in the (k +1)'* slot.

Vk:0 <k <cR:sp)=sloty) (21)

5.3.3 Correctness

By annotating the implementation with assertions and
ghost variables, the assertions (14)-(21) can be shown
to be invariantly true. The conjunction of the specifi-
cations (12) and (13) follows from the conjunction of
these invariants. [7]

5.4 Example Program

Problem Description FEach process in a mesh be-
gins with an initial value. At each iteration, every
process calculates its new value as a weighted average
of its old value and the values of its neighbors. The
problem is to find the final values after a fixed number
of iterations.

to_above[i,j] to_bel ow[i-1,j]

to_right[i,j-1] to_right[i,j]

to_left(i,j] to_left[i,j+1]

to_above[i+1,j] to_bel owfi,j]

] eoundary
D Cel |

Figure 2: Mesh Structure for Dirichlet’s
Problem

const int M = 7;
const int I = 100;
typedef AChannel<float> chan;

//size of mesh

//number of iterations

float Cell (chan &fr W, chan &fr_E, chan &fr N, chan &fr_S,
chan &to_W, chan &to_E, chan &to_N, chan &to_S,
float value) {
float *W_val, xE_val, *N_val, *S_val;
for (int time=0; time<I; time++) {
to_W nonblockingSend(value);
to_E.nonblockingSend(value);
to_N.nonblockingSend(value);
to_S.nonblockingSend(value);
W_val = fr_ W blockingReceive();
E_val = fr_E.blockingReceive();
N_val = fr N.blockingReceive();
S_val = fr_S.blockingReceive();
value = (4xvalue+*W _val+*E_val+*N_val4xS_val)/8.0;
delete W_val;
delete E_val;
delete N_val;
delete S_val;

}

return value;

}

float Boundary (chan &f_int, chan &t_int, float value) {
float * in_val;
for (int time=0; time<I; time++) {
t_int.nonblockingSend(value);
in_val = f_int.blockingReceive();
delete in_val;

return value;

}

void main ()

{
chan to E[M][M], to_-W[M][M], to N[M][M], to_S[M][M];
//to_xfi]fi] ts Cell ij’s output channel in direction =
float Final[M][M];

parfor (int i=1; i<M-1; i++) {
par {
Boundary(toN[1][i], to_S[0][i],i);
Boundary(toE[i][M-2], to_-W[i][M-1], i+M);
Boundary(toS[M-2][i], to N[M-1][i], i4+M=x2);
Boundary(to-W/[i][1], to_E[i][0], i4+M=x3);
parfor (int j=1; j<M-1; j++)
Finalli][j] = Cell(to_E[i][j-1], to-W[i][j+1], to_S[i-1][j],
to N[i+1][j], to-WI[i][j], to_E[i][i],
toN[i][i], to-S[i][i], 0);
} /xpars/
, } /*parforx/

Discussion Channels are passed as reference pa-
rameters; otherwise a local copy of the channel would
be made. Sends and receives performed on a local copy
would not affect the original channel.

6 Conclusion

We have presented a library integration of two
imperative communication and synchronization par-

adigms in CC++: monitors and asynchronous chan-
nels. Each construct has been specified formally, im-
plemented, and rigorously verified. Example programs
have been given to illustrate the ease with which these
concepts can be used in CC++. A similar approach
has also been used to integrate semaphores and ported
channels in CC++ [T7].

It is interesting to note the brevity and simplicity
of the proofs of correctness for these libraries. Only
predicate logic was required in each case, since the
specifications were given entirely in terms of safety
properties. This was possible because of the concept
of atomicity in CC++.

Object-orientation plays an important, facilitating
role in the integration of these paradigms. Inheritance
provides a natural mechanism for declaring and defin-
ing particular monitor instances. Generic classes per-
mit the asynchronous channel library to be strongly
typed, providing a more robust interface.

Our libraries are currently being used by develop-
ers in the fields of matrix algorithms and grid-based
solvers. We are encouraged by these preliminary ap-
plications that these verified libraries will be of great
value to programmers.

References

[1] Gregory R. Andrews. Concurrent Programming: Prin-
ciples and Practice. Benjamin/Cummings, Redwood
City, CA, 1991.

[2] Per Brinch Hansen.
Prentice Hall, 1973.

Operating System Principles.

[3] P. A. Carlin, K. M. Chandy, and C. Kesselman. The
Compositional C++ language definition. Technical
Report CS-TR-92-02, Computer Science Department,
California Institute of Technology, 1992.

[4] K. Mani Chandy and Stephen Taylor. An Introduction
to Parallel Programming. Jones and Bartlett Publish-
ers, Boston, MA, 1992.

[5] R.P. Cook. Starmod— a language for distributed pro-
gramming. [EEE Transactions on Software Engineer-
ing SE-6, 6:563-571, Nov 1980.

[6] C.A.R. Hoare. Monitors: An operating system struc-
turing concept. Comm.ACM, 17(10):549-557, Oct
1974.

[7] P. A. G. Sivilotti. A verified integration of imperative
parallel programming paradigms in an object-oriented
language. Technical Report CS-TR-93-21, Computer
Science Dept., California Institute of Technology, 1993.

[8] P. A. G. Sivilotti and P. A. Carlin. A tutorial for
CC++. Technical Report CS-TR-94-02, Computer Sci-
ence Dept., California Institute of Technology, 1994.

