Specification and Testing of
Quantified Progress Properties
in Distributed Systems

Prakash Krishnamurthy
Paul A.G. Sivilotti

Dept. of Computer & Info. Science
The Ohio State University

Testing CORBA Components

m Component interface

m Behavioral specification interface
m Abstract state behaviors &
= Both safetyand Q abstract state
progress properties
m From interface,
automatically generate
testing harness
m Unit-testing
u Monitors/records O methods &
component behavior concrete state

m Reports violations (and

trace information) implementation

Specifying and Testing Quantified Progress Properties 3

Outline

m Basic operator: transient
m Certificates
W Testing transient
® Quantification
m Functional, relational
m Prototype of testing framework
m CORBA, cidl tool (C++/Java, OS's, etc)
m Future work

Specifying and Testing Quantified Progress Properties 5

m Distributed Autonomous
Peer-to-peer Systems

environment

system

Specifying and Testing Quantified Progress Properties 2

Challenges

m Understandability
m Specification, errors, debug information
m Efficiency
= Minimization of overhead for checking
\ m Handling quantified properties
m Practicality
u Partial specification
m Proportional costs and benefits
m Heterogeneity

n Different OS's, pla‘rfor‘ms,

Specifying and Testing Quantified Progress Properties 4

Transient Property

m Informal definition of transient.P
m If P is ever true, must later be false

m Request for critical section access
midle > ready > critical

m transient.(status = ready)

m After access is requested, eventually
permission is granted

m Testing reveals starving process
m But where is the fault?

Specifying and Testing Quantified Progress Properties

OHIO
57,

DnveRsTY

3

Certificates

m Component properties that do not
depend on environment

m Examples:

= transient.(status = critical)
n Eventually, component releases critical
section

n Reveals location of fault
m transient (status = idle ~ button_down)
= Eventually, GUI responds to button

Specifying and Testing Quantified Progress Properties 7

Example: 6UI

interface GUT {
state bool button_down;
state enum {idle, ready, critical} status;

(status = idle) next (status = idle v status = ready)
(button_down) next (button_down v status = ready)

transient.(status = idle " button_down)

Testing Transience

m Recall for transient.P:
m If P ever becomes true, it is later false
= Note: P may never become true

m Consequence of formal definition:
transientP O infinitely often —P

m To test for transience, use:
-transientP O finitely often =P
m Look for a finite trace after which only P

Specifying and Testing Quantified Progress Properties 9

Ry Specifying and Testing Quantified Progress Properties 8
Timestamped History
transient.P
P
true
false X . X ; R
+ t + t >
danger danger danger time
predicate evaluation...
R IR
P pt— e e
+ +
set clear
OHIO timestamp ~ timestamp
ﬁ‘ﬁﬂ:: Specifying and Testing Quantified Progress Properties 10

Multiple Properties

m A component may have many progress
properties
transient (status = critical)
transient (status = idle * button_down)
transient.(...)

Specifying and Testing Quantified Progress Properties 11

Multiple Transient Prop's

transient P * transient.Q * transient.R

P =

Q t—"tt—t—t—t

R T ———t——r
m Complexity:

m Space: n timestamps kept
m Time: n predicate evaluations with each step

Specifying and Testing Quantified Progress Properties 12

Quantification of Transient

m Transient properties often quantified
= "state changes eventually”
Ak = transient.(status = k)
= "value of metric changes eventually”
Ak :: transient.(metric = k ~ status = critical)
= Naive expansion is costly to monitor
u If dummy ranges over a set D of values:
n |D| timestamps to maintain
= |D| predicate evaluations to perform

Specifying and Testing Quantified Progress Properties 13

Observation: Singularity

m Predicates are mutually exclusive
Ak it transient. (metric = k ~ status = critical) (P)

transient.(metric = 0 * status = critical) (P)
* transient (metric = 1 ~ status = critical) (P,)
~ transient.(metric = 2 * status = critical).. (P)..
m Truth of predicate functionally
determines value of dummy variable

For P.(s k) : predicate on state s, dummy k:
Ak :: transient.(P.(s k)) is functional iff
Ef = (P(s,k) O k=fs)

Specifying and Testing Quantified Progress Properties 14

Functional Transience

Ak :: transient.(metric = k © status = critical)

Py P
Py [t ———
Py
Py

m When is there "danger"” of a possible
violation?

Specifying and Testing Quantified Progress Properties 15

Satisfying Functional

Transience
m A functional transient property is
"satisfied" when either:

m The predicate that is true changes

u Value(s) of dummy variable(s) that makes
predicate true changes

m All predicates become false

m Provide f: states > dummy values
m Evaluate k using f
m Evaluate P using k

Specifying and Testing Quantified Progress Properties 16

Functional Transience

Ak :: transient.(metric = k * status = critical)

Py Pt -

P I S T | [
2 L T T T T

Py 11 e

Po 111 ———
4 IR 4 4

TS (RHr]R]r cf—s

m Complexity:

m Space: 1 timestamp & value(s) of dummy(s)
m Time: 1 function & 1 predicate evaluation

Specifying and Testing Quantified Progress Properties 17

Generalization: Relational

Transience

m Number of predicates that can be
simultaneously true is bounded (B)

Ak :: transient.(k <= metric <= k+1 ~ critical)

3 [[—— L | !
P3 I — e
L | | | | L | e s
P2 LI 1 1 I 1 LI T T
p b 1L T
1 I B s e 1
I T N R N B T
Po B B wa B s —
-
2 1 0
Specifying and Testing Quantified Progress Properties 18

Monitoring Relational

Transience

Py et

P, (et et
P, e ————
Py F————————————

TS, sfc
T5,[5) mlR—{o}{3]
m Complexity
m Space: B timestamps & dummy values
m Time: 1 relation eval'n & 2B timestamp updates

Specifying and Testing Quantified Progress Properties 19

Ubiguity of Functional

Transience

m Observation: Many quantifications of
transient appear to be functional
m Eg., timeouts and metrics

m Method-response semantics

= “method M returns a value eventually”
Ak :: transient.(rcv_M = k+#1 ~ snd_M = k)
Ak :: transient.(rcv_M > k " snd_M = k)
Ajk: j>k: transient.(rev_M = j * snd_M = k)

Specifying and Testing Quantified Progress Properties 20

Existential Quantification

m Not commonly used
m Ek :: transient.(k <= metric <= k+1)

m Meaning: One of the predicates must
be false infinitely often

m Relational (with bound B) is trivially
satisfied (for testing) when:
m B is finite, and
=B < D]

Specifying and Testing Quantified Progress Properties 21

Other Progress Operators

m Transient is a very basic operator
m Nice compositional properties

m Higher-order operator: leads-to (+->)

m Testing leads-to does not always
benefit from notion of functionality
mEg., (Ak:x=k +> y=k)

m Other simplifications can be made
m(Ak i x = k+->x<k)

Specifying and Testing Quantified Progress Properties 22

Quantification of Safety

Properties
m Safety operator: P next Q

n"if P holds, Q holds in the next state"
m Similar quantifications arise

m Ak :: X = k next x <= k
m Also commonly functional

m Truth of pre-predicate determines

value(s) of dummy(s)
m Similar performance benefit
u 1 function & 1 predicate evaluation

Specifying and Testing Quantified Progress Properties 23

Tool Support: cidl for
Testing CORBA Components
m Unit testing of CORBA objects
m IDL gives interface
m Method names, argument & return types
m Augment with “certificates” (CIDL)
m Method behavior
m As much/little description as wanted
m CIDL --> CORBA skeletons + testing
harness

Specifying and Testing Quantified Progress Properties 24

m IDL - Interface Definition
Language

m IDL description is given to a parser.

m Creates repositories, skeletons,
stubs.

IDL |
IDL Parser
stubs skeletons

< CORBA Bus

Specifying and Testing Quantified Progress Properties 25

CIDL Language

m Pragma-based notation

= compatible with all CORBA parsers
m Abstract state

m #pragma state bool button_down
m Safety properties
m Progress properties

m #pragma transient status == idle

m #pragma int k = metric in transient \
(?ne'l'r‘ic == k) && (status == critical)

ONIVERSITY. Specifying and Testing Quantified Progress Properties 27

CORBA IDL Parser

compile
GUI_skel.h and
link

GUI_skel.cpp

GUL_impl.h/cpp

TR
R
Rvetsiry Specifying and Testing Quantified Progress Properties 29

OHIO
SIAIE

Extending the IDL

Augmented
IDL Parser

skeletons
+ checks

CORBA Bus

Specifying and Testing Quantified Progress Properties 26

Example: 6UI in CIDL

interface GUI {
#pragma state bool button_down;
#pragma state enum {idle, ready, done} status;

#pragma next (status == idle), \

(status == idl || status == ready)
#pragma next (button_down), \

(button_down || status == ready)

#pragma transient.(status == idle && button_down)

Specifying and Testing Quantified Progress Properties 28

CIDL Parser

+

certificates

compile
and

link
(libraries)

GUI_skel.h
GUI_skel.cpp
GUI_state.cpp

GUL_impl.h/cpp

Specifying and Testing Quantified Progress Properties 30

m Architecture of Testing

Harness

Component_skel

Component_impl <—‘ Component_state
evaluate ()
dummies0 () =
predicate0 ()
predicatel ()

Specifying and Testing Quantified Progress Properties 31

Prototype cidl Tool

m For C++ and Java implementations
m Limitation: separate pragma expressions
m ORB-independent
m Tested with ORBacus and VisiBroker
m Platforms: Solaris, WinNT, Linux
m Supported pragmas
m Progress: transient, functional transient
m Safety: protocols

Specifying and Testing Quantified Progress Properties 32

Limitations on Testing

m Typical: testing reveals only presence
of errors, never their absence
m Higher confidence at low cost

m For progress: testing a finite trace
cannot even reveal presence of errors
m Programmer intuition on how long to wait

m For transient: passing an infinite test
case does not imply transient holds
m Use programming discipline

Specifying and Testing Quantified Progress Properties 33

Future Work
m Web services (WSDL)

= Natural extensibility
u Inverted development cycle
m Client-side verification

m Conformance checking based on observable
events (messages)

m Higher-level operators

= Automatic translation of pre/post
m Integration testing (system level)
m Continued evaluation

Specifying and Testing Quantified Progress Properties 34

Talk Outline

m Specifying progress with transient
m Monitoring components for transience
m Impact of quantification
m Functional and relational transience
m Special case of quantification (common)
m Permits efficient testing
m Tool support
m CORBA IDL extensions
u cid| parser generates testing harness

Specifying and Testing Quantified Progress Properties 35

Acknowledgements

m Distributed Components research
group at Ohio State
m Charlie Giles, Ramesh Jagannathan,
Scott Pike, Nigamanth Sridhar, Murat
Demirbas
m Funding sources:
m National Science Foundation (ITR)
m Lucent Technologies
m Ohio Board of Regents

Specifying and Testing Quantified Progress Properties 36

Specification and Testing of
Quantified Progress Properties
in Distributed Systems

Prakash Krishnamurthy
Paul A.G. Sivilotti

Dept. of Computer & Info. Science
The Ohio State University

Applications of cidl

m Testbed of fictitious applications
m E-commerce (auctions, bank/atm)
m Combinatorial (tree search)
m Games (speed, mastermind)
m Graduate course in CORBA at OSU
m Term-long team projects
m Collaborating with Lucent
m Telephony switch installation application

Specifying and Testing Quantified Progress Properties 38

6UI State Space

button_down

status

Specifying and Testing Quantified Progress Properties 39

