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Abstract

There are two basic parts to the behavioral specifica-
tion of distributed systems: safety and progress. In earlier
work, we developed a tool to monitor progress properties of
CORBA components specified using the temporal operator
transient. In this paper, we address the specification and
testing of transient properties that are quantified (over both
bounded and unbounded domains).

We categorize typical quantifications that arise in prac-
tical systems and discuss possible implementation strate-
gies. We define functional transience, a subclass of quanti-
fied transient properties that can be monitored in constant
space and time. We outline the design and implementation
of a tool for testing these properties in CORBA components.

1. Introduction

Distributed systems often exhibit a class of behavior
based on the semantics of concurrent, reactive computation.
The expected behavior of such systems is given as a relation
between the current state and future states of a computation.
Progress properties are used to express a behavior that oc-
curs eventually. Progress properties have been recognized
as a fundamental part of the behavioral description of real
distributed systems [2]. Because such properties cannot be
violated by finite program executions, however, they have
received little attention from the software testing commu-
nity. Moreover, errors involving progress can be quite subtle
and difficult to debug. Hence, supporting the specification
and testing of progress properties has practical importance.

In earlier work [21], we introduced a specification tech-
nique for progress properties using a simple temporal oper-
ator: transient. One important characteristic of this tech-
nique is that the predicates are local to a single component,
meaning that they can be tested without gathering global

state. We also prototyped a tool, cidl, for monitoring C++
components against their specified progress properties [6].

Experience with cidl has shown that programmers fre-
quently require quantification to describe real components.
Furthermore, this quantification often occurs over large or
even unbounded domains. Hence, efficiently supporting
such quantifications is a significant pragmatic challenge. In
this paper, we define functional transience which identifies
a subclass of quantified transient properties. We introduce
the in transient operator which permits testing such quan-
tified expressions (even over unbounded domains) in the
same space and time complexity as a single property.

Our primary contribution in this paper is defining func-
tional transience and developing a tool for efficiently test-
ing these properties despite their quantification. We also
address the testing of component implementations written
in Java. We sketch the design of our Java testing harness,
which makes use of Java reflection.

The rest of this paper is organized as follows. In Sec-
tions 2 and 3, we explain the concept of transience and de-
scribe the existing cidl tool. In Section 4, we introduce the
notion of functional transience and discuss its relevance to
testing. We also discuss other forms of quantified transient
properties. In Section 5, we describe the improvements and
modifications required for the existing cidl tool to support
functional transience. In Section 6, we discuss extending
the cidl tool for supporting Java implementations. Finally,
in Sections 7 and 8, we contrast our work with some related
works and summarize our findings.

2. Specifying progress with transient

Many operators exist for specifying progress, including�
(“eventually”) [11], ensures [3], and � (“leads-

to”) [17]. In this section, we discuss our choice of transient
[13] as the fundamental operator and analyze some issues
regarding testing for the violation of a transient property.



2.1. The transient operator

The cidl tool uses transient as its fundamental operator
for specifying progress. For a predicate � on component
state, the notation transient � � indicates that if � ever be-
comes true, it is guaranteed to eventually become false. Of
course, � may never become true, in which case the for-
mula is trivially satisfied.

For example, consider a traffic light that can be in one
of three states: ����� , ���
	�	��� , or ��������� . The predicate� ��	����������� is a predicate on the state of the traffic light
that is true exactly when the traffic light is red. The for-
mula transient ��� � ��	������������� expresses the property that
the light does not remain red forever.

One consequence of the formal definition of transient is
that in order for a component to satisfy such a property, the
property must be guaranteed by the component regardless
of the behavior of the environment. For example, a traf-
fic light that is red must not rely on some external behavior
(say the arrival of a car that trips a sensor) for it to change to
a different color. For software components, the most com-
mon example of such a property is termination. A server
might guarantee that when it receives a method invocation,
it eventually sends a result to the invoker, regardless of the
arrival of other messages in the meanwhile. Such behavior
can be captured by a transient property.

We place a further requirement on transient properties:
the predicate must be local to the state of a single compo-
nent. For example, consider two traffic lights, � � and �"! ,
and the property: transient �#�$� � � � ��	���%�&�'�'�)(*� ! � � ��	���+�
�����,� . This property can be unilaterally satisfied by either
light, regardless of its environment. It is not, however, a
valid transient property of either light, because the predi-
cate is not local to the state of that light alone. Instead, we
consider it to be a transient property of the aggregate com-
ponent consisting of the composition of the two individual
lights.

The choice of transient as our temporal operator is mo-
tivated by the following reasons. Firstly, it is a fundamen-
tal operator for specifying progress. Other progress opera-
tors (such as those given above) can be defined in terms of
transient. Secondly, a local predicate can be easily and
efficiently tested, even in a distributed application. The
transient properties that involve such predicates are there-
fore well-suited for testing distributed components [19].
Finally, it enjoys the nice compositional property that if
transient � � is a property of a component, it is also a prop-
erty of any system containing that component.

2.2. Testing progress with transient

Progress properties, by definition, cannot be violated
by a finite trace. However, it is possible to detect when

progress has not been satisfied for a very long time. Indeed,
developers often have an intuition about how long to wait
for a progress property to be satisfied. Hence, it is useful to
have tool support for monitoring computations and tracking
progress properties.

Our approach to testing progress is based on detecting
when progress has not been satisfied for a very long time. It
is left to the tester to define a “very long time” by establish-
ing a threshold time by which progress properties are ex-
pected to be satisfied. In order to monitor the potential vio-
lation of a transient property, a timestamped history is used.
For example, consider the property: transient ��� � ��	���-�
������� . The state of the traffic light can be tested initially
and after each change of state to detect when this predi-
cate becomes true. The event that truthifies the predicate is
timestamped and recorded. Subsequently, when the pred-
icate becomes false, the timestamp is cleared. If lack of
progress is suspected (i.e., the threshold time is exceeded),
each of the transient predicates can be examined to deter-
mine which ones are true and the duration for which they
have remained true. This gives the tester an indication of
where to begin looking for the suspected error.

It is important to note the distinction between the formal
meaning of the transient operator and what can be tested by
monitoring actual computations. While the former requires
the predicate to be falsified eventually, regardless of the be-
havior of the environment, no such restriction is required
for latter. To pass a test for transience, a component must
exhibit the behavior of making the corresponding predicate
false infinitely often. No testing infrastructure can examine
this behavior in the context of all possible environments.

3. The cidl tool

The cidl tool [6] provides a way for specifying and
tracking transient predicates for C++ implementations of
CORBA components. Component interfaces are given in
an extended interface definition language, which the tool
then uses to generate a testing harness automatically. This
harness monitors component behavior with respect to the
specified progress properties.

3.1. Extensions to IDL

The CORBA standard includes an interface declaration
language (IDL), in which object interfaces (class names and
method signatures) can be declared.

In previous work [20], we defined a set of pragma ex-
tensions (called “certificates”) to standard IDL for declar-
ing component interfaces enriched with behavioral specifi-
cations. This extended declaration language is called CIDL
(for “Certificate-enriched IDL”). In this paper, we are pri-



marily concerned with progress properties. For these prop-
erties, there are two pragmas of interest:

1. #pragma state, which permits the declaration of
an abstract state, and

2. #pragma transient, which permits the specifi-
cation of transient predicates on this abstract state.

A C-like syntax is used for both these pragmas.
As an example, consider a traffic light component with

two abstract state variables: color and cnt. We wish to
assert that this light does not remain red forever. Figure 1
gives a CIDL fragment that captures this property.

interface TrafficLight {
#pragma state enum LightColor \

{red, yellow, green};
#pragma state LightColor color;
#pragma state int cnt;

#pragma transient.(color == red);
... <etc> ...

};

Figure 1. Interface of TrafficLight

The CORBA standard requires an IDL parser to ignore
pragmas that it does not recognize. Declarations written in
CIDL, therefore, are fully backwards-compatible with any
standard IDL parser. That is, when a CIDL declaration is
passed through a standard IDL parser, the result is the same
as if the basic IDL declaration, with no pragma certificates,
had been used.

3.2. Generating a testing harness

When a CIDL declaration is passed through the cidl
parser, a collection of auxiliary classes is created and linked
to form a testing harness for the component implementa-
tion. The harness consists of precompiled libraries, instan-
tiated template classes, and generated code. This harness
is responsible for generating debugging information for the
component, based on its specified properties and abstract
state.

In addition to this testing infrastructure, the cidl tool also
generates the usual CORBA skeletons and stubs. The re-
sult, therefore, is a fully operational CORBA binding for
the given component.

Figure 2 specifies the files generated by the cidl transla-
tor. As shown in the figure, in addition to the files generated
by the standard idl translator, an additional class, Traffi-
cLight state is also generated. This class captures the
abstract state of the component implementation. It encap-
sulates the specified predicates and provides the necessary

interface for the cidl runtime to keep track of the predicates
involved.

cidl

TrafficLight.cpp

TrafficLight_skel.cpp

TrafficLight_state.h

TrafficLight_state.cpp

TrafficLight.cidl

Standard CORBA idl generated

TrafficLight.h

TrafficLight_skel.h

Figure 2. Files generated for TrafficLight

It is important to note that the generated testing harness is
independent of any particular CORBA vendor. The cidl tool
has been tested with both ORBacus and VisiBroker. The
testing harness is also independent of operating system and
has been tested on Solaris, Windows NT, and Linux.

3.3. Testing transient with cidl

The development cycle with cidl is very similar to
the standard CORBA development cycle. For a standard
CORBA application, the developer begins with an IDL dec-
laration, passes this declaration through a parser, and then
implements the functionality of the specified component.
The cidl tool is used in exactly the same way. The com-
ponent interface declaration in CIDL is a direct extension
of its declaration in pure IDL. The component implemen-
tation written when using cidl is virtually identical to that
written for a standard CORBA implementation. There are
two slight, but important, differences:

� The implementation must declare as a friend the auto-
matically generated abstract state class.

� Each method in the implementation must end with a
call to do update().

Both of these requirements are easily checked with a syn-
tactic scan of the implementation.

In order to monitor component behavior, the developer
must also provide an implementation for one additional
method. Note that the properties specified in a CIDL dec-
laration are properties on abstract state. This separation of
abstract (interface) state from implementation state is an im-
portant tenet of data hiding. It is up to the developer to pro-
vide a mapping from the concrete implementation state to
the abstract state declared in the CIDL. This is done by im-
plementing a method (evaluate()) in the abstract state



class that takes an instance of a concrete implementation
and calculates the corresponding abstract state.

On execution, the abstract state is automatically tracked
and the associated properties are monitored. A possible
trace of execution for the TrafficLight component is
shown in Figure 3

Predicate 1: color == red
Predicate 1 is false initially

Predicate 1 became True!
Became true at: 0.24 seconds

Predicate 1 remains true
Became true at: 0.24 seconds
Has been true for 1.35 seconds

Predicate 1 remains true
Became true at: 0.24 seconds
Has been true for 7.07 seconds

Figure 3. A possible trace of execution

As shown in Figure 3 the execution trace gives the be-
havior of the component with respect to the declared prop-
erties. Various levels of diagnostic output can be generated
(including a silent mode that results in no space or time
overhead for the implementation). These traces automate
current ad hoc techniques for debugging distributed systems
by tracking individual component behavior and giving the
tester insight as to where a specified temporal property is
possibly being violated.

4. Quantification of transient properties

The cidl tool has been used in a graduate course in Dis-
tributed Systems at The Ohio State University. Our ex-
perience with cidl indicates that programmers frequently
require quantification to describe real components. This
quantification often occurs over large or even unbounded
domains. In this section, we present the different kinds of
quantification that may occur and discuss how we provide
practical support for testing each. We define the concept of
functional transience and describe how it permits monitor-
ing quantified progress properties efficiently.

4.1. Universal quantification of transient

A common progress property in a distributed system is
the requirement that some (well-founded) metric eventually
changes. In conjunction with a safety property that asserts
that the metric never increases, such a progress property
typically forms the basis of a proof of termination. Such

a progress property is captured by a universal quantification
of transient properties.

For example, consider a traffic light with a natural num-
ber metric, � � � . The metric is guaranteed to change while
the light remains green. This property is expressed by:

���������	��
 �� transient �#� � ��	��� � �������
� ( � � � ����� �
A naive expansion of this property contains an unbounded
number of terms:

transient �#� � ��	���%� �������
� ( � � � ��� �
( transient �#� � ��	���%� �������
� ( � � � �����
( � �
�

Thus, providing support for testing this quantification
would mean tracking an unbounded number of predicates.

Even in cases where the domain is bounded, universal
quantification is still a convenient short-hand. For exam-
ple, to express the behavior that every traffic light color is
transient, one can write:

���������	����� ��� ��� ��	����� transient ��� � ��	���%����� �
The expansion of this quantification results in only three
terms to be tracked:

transient �#� � ��	���%�&�'�'�,�
( transient �#� � ��	���%� �������
� �
( transient �#� � ��	���%�&���
	�	��� �

In general, however, the number of terms can be quite large,
resulting in significant time and space costs to maintain a
trace of execution.

Due to the frequency of such universally-quantified
properties in practice, it is desirable to be able to support
their testing efficiently.

4.2. Functional transience

The examples above share an interesting property: at
most one term in the quantified expression can be true at any
given moment. For example, if � � � ��� , only the predi-
cate in the term transient �#� � ��	���%� �������
� ( � � � ����� can
possibly be true. Consequently, only this particular transient
property could be in danger of being violated! Rather than
tracking an unbounded number of predicates, therefore, it
suffices to track the one predicate that is true (if any). A
universal quantification of transient properties is satisfied
when either (i) a predicate from a different term becomes
true, or (ii) the predicates from all terms become false.

These universal quantifications arise quite frequently,
particularly in connection with metrics. They are charac-
terized by the observation that there is at most one value
of the dummy variable such that the transient predicate is



true. We call transient properties that satisfy this condi-
tion functionally transient. Formally, a transient property is
defined to be functionally transient when the values of the
dummy variables are functionally determined by the truth
of the predicate.

A transient property with dummy variables � , � , � , and
so on (let this set of variables be � ) and with component
variables taken from a set � has a predicate of the form� �#������� � and can be written as

���	�
���������
� �
� � � transient �#� � �������� � � �
This property is said to be functionally transient when:

����� ��� ��� � ������� � � � �#�������)��� ��� ����� � �)� � �
We now introduce a new operator, in transient, for speci-
fying functionally-transient properties, writing them as:

����� ��� ��� ��� � ����� � � � in transient �#� � �#�������)� �
(Multiple dummy variables are separated by a comma.) For
example, this notation allows us to write the quantification
above as:

� �	� � � � � � in transient ��� � ��	��� � �������
� ( � � � �����
The advantage of this notation is that it makes explicit the
functional dependence of the dummy variables on the com-
ponent state.

A functionally-transient property is satisfied when either
the values of the dummy variables change or the predicate
becomes false for all possible values of the dummy vari-
ables. Hence, two pieces of information must be maintained
to monitor for possible violations of such a property:

� the value of the dummy variable(s) that make the pred-
icate true, if any, and

� the time at which that predicate became true.

Hence, a complete history can be stored in constant space
and updated with time complexity that is independent of the
size of the domain of quantification.

Thus, functional transience defines a subset of
universally-quantified transient properties which can be ef-
ficiently monitored independent of the domain of quantifi-
cation. This operator has been added to CIDL as a new
pragma extension. The tool support for this new extension
is discussed in Section 5.

4.3. Relational transience

As a generalization of functional transience, we define
the notion of relational transience. Consider a universally-
quantified transient predicate in which the number of terms
with true predicates is bounded above by some fixed ! . In

this case, the values of the dummy variables are relationally
determined by the truth of the predicate.

For example, recall the functionally-transient property
given above stating that every traffic light color is transient:

���������	����� ��� ��� ��	����� transient ��� � ��	���%����� �
This does not require the light to change to each color in-
finitely often (e.g., the property is satisfied by a light that
toggles between red and yellow). To express the property
that the light changes to each color infinitely often, we could
write:

���������	����� ��� ��� ��	����� transient ��� � ��	���#"����� �
This property is not functionally transient, since the truth of� ��	���$"��� does not imply any one value of � . There is,
however, an upper bound on the number of predicates that
can be true simultaneously, namely, % ��� ��� ��� ��	���&%�' � .

A relationally transient property in which at most !
predicates can be true simultaneously can be tracked with
! stored values of dummy variables and ! associated time-
stamps. With each state transition, the history can be up-
dated in ( �!
� time. The space and time complexity of
maintaining this history, therefore, is linear in ! , and is in-
dependent of the size of the range of quantification.

Functional transience is a special case of relational tran-
sience, the case where ! � � . In practice, however, this
special case appears to be the most common.

4.4. Existential quantification of transient

Although much less common, transient prop-
erties can also be existentially quantified, as in:
���)� � � transient � �*� � . This expression states that at
least one of the �+� predicates is transient.

One reason that these quantifications are less common is
that they can frequently be simplified, or even established
to be vacuously true. For example, consider the formula:

��� �����	����� ��� ��� ��	����� transient ��� � ��	���#"����� �
Because � ��	��� must have one of the values in LightColor,
at least one of the predicates is guaranteed to be false. Thus,
in an infinite computation, at least one of the predicates is
guaranteed to be false infinitely often, thus satisfying the
existential quantification.

An existential quantification that is relationally transient
will be trivially true whenever the relational bound is finite
and strictly smaller than the range of quantification.

For other cases, the following theorem can be used to
help test an existential quantification of transient properties.

Theorem 1. �
�)� � � transient � �,� �$� transient � ����� � �-�,� �
Proof. Let . represent an action taken from the set of pro-
gram actions.



���)� � � transient � �,� �� � definition of transient �
���)� � � ���	. � � � � � � . ��� � � � � �

� � strengthen pre and weaken post �
���)� � � ���	. � � � ���	� � �-��� ��� . ��� ���	��� �-��� ��� � �� � idempotence of 	 �
���	. � � � ���	��� ����� ��� . ��� ���	� � �-��� �
� �� � definition of transient �

transient � ����� � �-�,� �

Thus, a violation of transient � ����� � � ��� � indicates a
violation of ���)� � � transient � �,� � . This theorem can be
applied regardless of the domain over which � is quantified.

4.5. Transient predicates with quantification

The previous theorem suggests another useful form in
which quantification can appear in transient properties: as
part of the transient predicate itself. That is:

transient � ����� � � � 
 ���� � �
transient � ���)� � � � 
 ���� � �

Tracking such a property requires a single timestamp (in-
dicating when the predicate last became true). The chal-
lenge, however, is in evaluating the predicate (i.e., initially
and after each state transition), which is now a quantifica-
tion. For this purpose, techniques from assertion-checking
in sequential programs can be used. In particular, Rosen-
blum’s technique of explicit iteration over bounded domains
can be used to approximate the general case [16].

5. Supporting functional transience

This section describes the modifications made to the ex-
isting cidl tool for supporting universally-quantified func-
tional transience for C++ implementations of CORBA com-
ponents.

5.1. Extending CIDL

The first modification needed is an extension of CIDL to
distinguish functionally-transient properties. As with other
CIDL constructs, a pragma is used for this purpose.

The syntax of the new CIDL pragma mirrors that of the
formal temporal notation for in transient. Recall the exam-
ple:

� �	� � � � � � in transient ��� � ��	��� � �������
� ( � � � �����
The only changes required for mapping such a property into
CIDL are: (i) the use of C-like syntax for expressions (e.g.,
&& rather than ( ), and (ii) the inclusion of type declara-
tions for the dummy variables. Hence, the property above,
when expressed in CIDL, is written:

#pragma (int k = cnt) in transient.\
((color == green) && (cnt == k));

In general, the declaration of a functionally-transient
predicate in the extended CIDL has the form:

#pragma (<type> <var> = <expr>) \
in transient.(<boolean_expr>);

Multiple dummy variables can be declared using the comma
operator.

The CIDL declaration for the TrafficLight com-
ponent given in Section 3 is extended with a functionally-
transient property in Figure 4.

interface TrafficLight {
#pragma state enum LightColor \

{red, yellow, green};
#pragma state LightColor color;
#pragma state int cnt;

#pragma transient.(color == red);
#pragma (int k = cnt) in transient.\

((color == green) && (cnt == k));
... <etc> ...

};

Figure 4. Extended TrafficLight interface

5.2. The cidl translator

In order to monitor a computation for the possible viola-
tion of a functionally-transient property, a timestamped his-
tory is maintained. This history is a list of times when any
one of the predicate terms became true, along with the value
of the dummy variable corresponding to that term. The cidl
tool must therefore also produce the code to evaluate the
dummy variable(s) and store its value.

Ordinary transient properties are supported by a boolean
method in the abstract state (i.e., the evaluation of the cor-
responding predicate) and a collection of pre-compiled li-
braries and template classes. For functional transience,
however, the need to generate and store unique types (i.e.,
the free variables) requires individual classes to be gener-
ated for each functionally-transient predicate declaration in
the CIDL declaration. These classes hold the history infor-
mation (including timestamp and values of free variables).

For example, consider the TrafficLight interface
specified in Figure 4. The cidl parser generates a class
corresponding to the functionally-transient property in this
CIDL declaration. The skeleton of the class is shown in
Figure 5.

All of the generated FTPHistoryHolder classes are
placed in a separate file which is compiled and linked with



class TrafficLight_FTPHistoryHolder_1
: public FTPHistoryHolder {

public:
int k;
bool result;

bool isSameValue ()
{ ... }

void showCurrentValue (ostream& fs)
{ ... }

};

Figure 5. Generated HistoryHolder class

the testing harness. The cidl testing environment uses the
FTPHistoryHolder interface to track the history of the
declared functionally-transient predicates.

As with ordinary (unquantified) transient properties, for
each functionally-transient declaration a new method is
generated in the abstract state for evaluating the predicate.
In the case of functional transience, this method takes the
appropriate FTPHistoryHolder object as its argument.

5.3. Testing functional transience

Monitoring functional transience entails no more work
for the developer. The exact same steps are followed as
discussed in Section 3.

Internally on initialization, the history objects for the
functionally-transient predicates are automatically created
and registered with the cidl runtime environment by the ab-
stract state object . These history objects are then used by
the cidl runtime environment for monitoring the declared
progress properties.

A fragment of a possible trace of execution for the
TrafficLight component is shown in Figure 6.

6. Supporting Java implementations

One of the strengths of CORBA is its support for hetero-
geneous computing. Individual components can be writ-
ten in a variety of implementation languages (including
C++ and Java). This section addresses the extension of
the cidl tool to support monitoring Java implementations of
CORBA components. The design uses the introspection ca-
pabilities available through the Java Reflection API.

6.1. Design issues

Our approach to testing progress in Java implementa-
tions is very similar in philosophy to that for testing C++

Predicate 2: k = cnt in
((color == green) && (cnt == k))

Predicate 2 is true initially with k = 6

Predicate 2 remains true with k = 6
Became true at: 0.00 seconds
Has been true for 0.53 seconds

Predicate 2 now true with k = 5
Became true at: 0.96 seconds

Predicate 2 remains true with k = 5
Became true at: 0.96 seconds
Has been true for 3.02 seconds

Figure 6. A trace for functional transience

implementations. Independent of the language of imple-
mentation, the main issues remain the same (e.g., keeping
track of an abstract state, storing timestamps, etc.).

There are, however, some pragmatic differences between
Java and C++. In particular, the C++ testing harness uses
method pointers and templates, neither of which is directly
available in Java. These features allow much of the testing
harness to be packaged as a static library, minimizing the
amount of code that must be generated by the cidl parser.

While Java does not provide these features directly, it
does provide the capability for introspection. Through the
Java Reflection API, a class can be queried at run-time
for its name, supported interfaces, method signatures, and
members.

We use this capability to dynamically bind generated
functionally-transient predicates with a statically provided
container class. Although dynamic introspection can be rel-
atively expensive, the cidl testing harness uses it only at
bind-time (i.e., when the computation trace begins). Sub-
sequent calls are made directly through a cached reference.

6.2. The CIDL language

The IDL interface declaration is independent of the im-
plementation language. Hence, our aim is for CIDL to also
be independent of the implementation language. However,
our prototype implementation does not currently translate
between declarations and expressions in the CIDL and an
equivalent structure in the target implementation language.
Therefore, the abstract state and transient predicates must
currently be written in the same syntax as the target imple-
mentation language.

To make specifications independent of implementation
language, basic IDL types could be used in the declara-
tions of abstract state. Translations from these types to their
equivalent representations are well defined by the CORBA



standard. Of course, the design of the test harness is in-
dependent of such a generalization; only the CIDL parser
would need to be changed. This generalization has not yet
been undertaken because there has not yet been compelling
demand to monitor implementations of the same interface,
written in different languages.

6.3. The CIDL-to-Java translator

The cidl translator is responsible for generating the ab-
stract state class declaration and for providing an interface
to the cidl runtime environment for monitoring the specified
predicates.

Figure 7 illustrates the files generated by the cidl-to-
Java translator for the traffic light example. In addition
to the standard stubs and skeletons, the tool also generates
one class for abstract state and one for each functionally-
transient predicate.

cidlTrafficLight.cidl

TrafficLightHolder

Standard CORBA idl generated classes

 .. etc ..

TrafficLight_state

TrafficLight_FTPHistoryHolder_1

TrafficLight

TrafficLightHelper

Figure 7. Classes generated by a cidl-to-Java
parser

As with the cidl-to-C++ translation, the generated testing
harness is independent of any particular CORBA vendor.

6.4. The Java testing harness

A UML class diagram of the Java testing harness is given
in Figure 8.

The DebugInfo class. This is a container class
that provides the link between the individual predicate
trackers and the abstract state. The DebugInfo class
maintains an array of transient trackers (instances of the
TransientPredicateHistory class discussed be-
low) and of functionally-transient history trackers (in-
stances of the FuncTransPredHistory class discussed
below). There is one tracker object per transient (or func-
tionally transient) property in the component specification.

The update() method of the DebugInfo class
causes the individual predicate trackers to re-evaluate their

predicates and update their stored history. This method is
invoked every time an event occurs that could modify com-
ponent state (i.e., a method executes).

Note that the DebugInfo class greatly simplifies the
process of adding new kinds of predicates to the testing
harness. Tracking a new type of predicate, say a relational
predicate, can be easily supported given the implementation
of the specified predicate tracker.

The TransientPredicateHistory class. This
class tracks transient predicates. Each instance tracks a sin-
gle transient predicate. At initialization, it discovers (via re-
flection) the name of the predicate to track, and queries the
abstract state class to construct the corresponding method
object. When an update request is received, it invokes the
appropriate predicate method (see Figure 9) to evaluate the
predicate and maintain the timestamped history.

− holds : boolean
− stillHolds : boolean
− predicate : Method
− stateObj : AbstractState

+ TransPredHistory
+ initialize ()
+ update ()

(from TrafficLight)

+ myDebugger : DebugInfo

+ evaluate ()
+ predicate1 ()

+ ftpredicate1 ()
+ update ()

tph1:TransPredHistory

(from DebugHelper)
stateObj:TrafficLight_state

...

...
result = (Boolean) predicate.invoke (...)

Boolean result;

Figure 9. Dynamic method invocation with
Java reflection

The HistoryHolder interface. As the data type of
the object to be contained by the HistoryHolders is not
known until runtime and is different for each predicate, an
FTPHistoryHolder interface is specified for the run-
time environment to examine the HistoryHolder ob-
jects for obtaining the relevant information.

The FuncTransPredHistory class. This class
is designed for tracking functionally-transient predicates.
Each instance of the class tracks one functionally-transient
predicate. As the exact HistoryHolder class is not
known until runtime, it uses the HistoryHolder inter-
face for examining the dynamically instantiated Histo-
ryHolder object.

6.5. Using the cidl tool

The use of the cidl tool for monitoring CORBA com-
ponents written in Java is analogous to its use for compo-



DebugInfo
(from DebugHelper)

− initialized : boolean
− stateObj : AbstractState
− ftph_arr   : TransPredHistory[]
− tph_arr    : FuncTransPredHistory[]

+ DebugInfo ()
+ update ()

TransPredHistory
(from DebugHelper)

− holds : boolean
− stillHolds : boolean
− predicate : Method
− stateObj : AbstractState

+ TransPredHistory
+ initialize ()
+ update ()

FuncTransPredHistory
(from DebugHelper)

− predicate : Method
− historyHolder: FTPHistoryHolder
− stateObj: AbstractState

+ FuncTransPredHistory ()
+ initialize ()
+ update ()

<< Interface >> 
FTPHistoryHolder

(from DebugHelper)

<< Interface >>
AbstractState

(from DebugHelper)

Method
(from Reflect)

+ toString ()

uses

uses

+ isSameValue ()

0 .. n 0 .. n

Figure 8. UML diagram of the cidl testing harness

nents written in C++. An evaluate() method must be
provided to map concrete state to abstract state. One mi-
nor book-keeping detail for Java implementations is that the
data members of the component must be package accessi-
ble. Apart from this, the component implementation and the
development cycle as a whole remains unchanged.

7. Related work

The definition of an implementation language-
independent notation for defining interfaces in CORBA is
a particularly attractive vehicle for semantic specification
constructs. It is not surprising, then, that several proposals
have been made to extend CORBA IDL. The Object
Management Group, originators of the CORBA standard,
have formed a working group to investigate different
proposals for semantic extensions. Larch [7] is a two-tiered
specification language that has been applied to a variety
of implementation languages, including CORBA [18].
Recently, several tools for assertion-based specification and
testing of distributed Java components have been developed
[14, 4, 10, 9]. Our approach differs from this body of work
in its capacity to express progress properties and hence its
applicability to reactive distributed systems.

Temporal specifications in the spirit of “design-by-

contract” have been developed to express component behav-
ior contingent on the behavior of the larger system. Exam-
ples include: rely-guarantee [8], hypothesis-conclusion [3],
modified rely-guarantee [12], and assumption-guarantee
[1]. Our approach differs from this body of work in our
emphasis on testing. Because progress properties are re-
stricted to local predicates, we are able to monitor whether
these progress properties are being satisfied.

Another relevant area of research for testing in dis-
tributed systems is the work on adequacy assessment of test-
ing [16]. The TDS [5] tool evaluates the completeness of
testing in CORBA environments.

Our approach is similar in philosophy to the extensions
proposed to the Object Constraint Language in [15]. These
extensions also capture both safety and progress and are de-
signed to permit testing of the specifications. Two principal
differences are: (i) our explicit inclusion of quantification
in the specification notation, and (ii) our integration of the
specification with the usual CORBA development cycle.

8. Conclusion

Progress is a fundamental part of the behavior of dis-
tributed systems. This paper has described the cidl tool
which allows developers to specify and monitor progress



properties of CORBA components. The tool is fully
portable between CORBA implementations and operating
systems. The tool supports testing implementations in both
C++ and Java.

We have identified a special class of universally-
quantified transient properties, termed functionally tran-
sient. We have introduced an operator, in transient, that
permits these properties to be monitored in constant space
and time (i.e., independent of the number of terms in the
quantification). We have also analyzed various kinds of
quantified transient expressions that can arise (although in
practice functionally-transient properties are the most com-
mon due to their use in capturing metrics). Finally, we have
shown how the cidl tool generates a testing harness that
tracks violations of such quantified properties.

Several extensions to the cidl tool present themselves.
One extension is the incorporation of other temporal oper-
ators, such as leads-to or safety operators for capturing, for
example, method sequencing (i.e., protocols). Another limi-
tation of the current prototype is the need to specify abstract
state in the CIDL with an implementation language-specific
syntax. IDL type declarations could be supported instead.

Our approach has the same fundamental limitation as any
testing strategy: Testing can never be used to show the cor-
rectness of an implementation, only the presence of errors.
Beyond this fundamental limitation, the testing of progress
properties is further frustrated by the very nature of these
properties: A progress property cannot be violated by a fi-
nite trace. The cidl tool, therefore, can only be used to de-
tect the potential violation of a progress property. Despite
these limitations, testing is a vital part of the software de-
velopment cycle because it is a practical method to increase
confidence in the correctness of an implementation. The
complexity of the interactions in a distributed system makes
unit testing essential and the simplicity of our tool helps in
efficient monitoring of progress in distributed systems.
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