
On the Impossibility of Maximal Scheduling for Strong Fairness with Interleaving

Matthew Lang and Paolo A. G. Sivilotti
Computer Science & Engineering

The Ohio State University
Columbus, Ohio 43210

{langma,paolo}@cse.ohio-state.edu

Abstract

A strongly fair schedule is one in which tasks that are
enabled infinitely often are also executed infinitely often.
When tasks execute atomically, a strongly fair scheduler
can be implemented in a maximal manner. That is, an
algorithm exists that, for any valid schedule, is capable
of generating that schedule. We show that this assumption
of atomicity is necessary. That is, when task execution can
be interleaved with other tasks, no algorithm is capable of
generating all valid schedules. In other words, any algorithm
that correctly generates some strongly fair schedules must
also be incapable of generating some other valid schedules.

This impossibility result is the first example of an imple-
mentable UNITY specification for which no maximal solution
exists.

1. Introduction

A maximal implementation is one that is capable of
exhibiting all behaviors permitted by its specification [1].
In cases where a specification permits nondeterminism (as
is common in distributed systems), maximality is a strictly
stronger requirement than correctness. For example, consider
a specification for a communication protocol that requires
packet numbers to be assigned in increasing order, but
permits any value to be used for the first packet number.
A correct implementation of this protocol could always use
0 for the first packet number. But this implementation would
not be maximal, since it would never exhibit the behavior
where the sequence of packet numbers begins with a value
different from 0. Nondeterminism is useful in specifications
since it affords greater flexibility to implementations.

In some situations, maximal implementations are prefer-
able to ones that are merely correct. For example, net-
work fingerprinting is a security attack that exploits the
non-maximality of implementations for common network
protocols. Operating systems differ in how they implement
TCP/IP, a nondeterministic specification. While each imple-
mentation is correct, none is maximal. Thus, an attacker can
infer a remote machine’s operating system vendor, version,
and often patch level, simply by observing that machine’s
behavior with respect to TCP/IP [2], [3].

Maximality is also important for modular testing of
component-based systems. In particular, a non-maximal
implementation of one component can mask errors in a
different component, and thus prevent the test-based detec-
tion of those errors. For example, consider a multithreaded
system with a component responsible for scheduling which
thread executes next. Testing such nondeterministic systems
is notoriously difficult since an error in the multithreaded
code might be exposed only by particular schedules. It is
a well-known observation that testing can be used only to
reveal the presence of errors, never their absence [4]. A
non-maximal scheduler, however, makes things even worse.
If the (correct but non-maximal) scheduler is incapable of
producing any of the problematic schedules, then no amount
of testing can be used to reveal the presence of this error.

In this paper, we examine the problem of implementing a
strongly fair scheduler in a maximal manner. The context of
this scheduling problem is a general one: tasks are modelled
as actions that are either enabled or disabled. An enabled
action, when executed, modifies the state of the system and
thus can affect whether other actions are enabled or disabled.
A strongly fair scheduler must guarantee that an action that
is infinitely often enabled is infinitely often executed.

Informally, a tension exists when implementing a strongly
fair scheduler in a maximal manner. On one hand, establish-
ing the correctness of a scheduling algorithm is easiest when
the algorithm permits little (or no) concurrency amongst
tasks. On the other hand, a maximal algorithm must permit
as much concurrency as possible.

A maximal algorithm for strongly fair scheduling does
exist [5]. This algorithm, however, assumes that tasks exe-
cute atomically. That is, the algorithm is maximal only for
systems in which a task affects the enabledness of other
tasks in one atomic step. This assumption is not reasonable
for distributed systems, where the effects of one task can be
interleaved with the effects of another. We show, however,
that this assumption is necessary. That is, we show that when
task execution is interleaved, there does not exist a maximal
implementation of a strongly fair scheduler. Correct imple-
mentations do exist, but any such implementation is neces-
sarily non-maximal. This result has theoretical importance
in that it establishes a new impossibility result regarding
maximality. It has practical consequence as well; any system

scheduled using such a scheduler becomes unnecessarily
deterministic.

The impossibility of a maximal distributed strongly fair
scheduler is the first result of its kind: an implementable
UNITY specification that has no maximal solution. In the
next section, we illustrate two categories of specifications
which do not have maximal implementations. We will also
show that maximal implementability is non-monotonic with
respect to refinement.

We then formalize the scheduling problem for strong
fairness with interleaving, and prove that any solution to
this problem is necessarily non-maximal.

2. Specifications without Maximal Solutions

Here, we present illustrative examples of two categories
of specifications that are not maximally implementable. We
use UNITY logic [6] for specifications and assume a model
of computation based on the UNITY computational model.
The results in this section, however, extend to any reasonable
model of computation for parallel systems (such as the one
described in [7]). The appendix provides a formal treatment
of our model, including definitions of algorithms, executions,
traces, and when a trace satisfies a UNITY specification.

2.1. The Fair Dice Problem

The Fair Dice Problem is as follows: A process observes
dice being thrown. The process must eventually declare
whether or not the dice are fair. The process is allowed to
claim that the dice are fair when they may not be (i.e., the
process is allowed a false positive), but must not claim that
they are unfair when in fact they are (i.e., the process is not
allowed a false negative).

The formal specification for the observer process with a
single die valuing 0 or 1 is:

constant die (O1)
invariant decision ∈ {undecided, fair , unfair} (O2)
true ; decision 6= undecided (O3)
stable decision = k for k ∈ {fair , unfair} (O4)
Hypothesis: die = k ; die 6= k, constant decision

Conclusion: true ; decision = fair (O5)

Informally, this specification says that the observer is not
allowed to change the die (O1) (i.e., only the environment
can roll the die), the observer must eventually decide on fair
or unfair (O2, O3), and once a decision is made it cannot
be changed (O4). The last property requires the observer to
decide fair if the die changes infinitely often.

The family of behaviors defined by the observer specifi-
cation fall in two categories:

• Those where the value of die changes infinitely often,
and hence eventually decision = fair .

• Those where the value of die changes a finite number
of times, and hence eventually either decision = fair
or decision = unfair .

In order for an observer process to be maximal, it must
be capable of generating any such behavior. However, there
is no such observer process—every correct observer must
always declare the die to be fair.

Theorem 2.1. There is no maximal implementation of the
fair dice problem.

Proof: For a contradiction assume there is a maximal
solution to the fair die problem and let O be a maximal
observer. Now consider a sequence δ of die rolls such that
die changes value only a finite number of times. In order
for O to be maximal, there must be a execution of O in
which O decides unfair after observing a finite prefix of
δ . Let n be the number of rolls that are observed.

Now let δ′ be a sequence of die rolls identical to δ
up to the n + 1th roll and for every subsequent roll, the
value of the die is the opposite of the previous roll. Since O
observes the same n rolls in δ′ as in δ , the execution of
O that decides unfair after observing n rolls of δ must
also decide unfair after observing n rolls of δ′ . However,
δ′ clearly meets the hypothesis of O5 and therefore since
O is correct, it must decide fair . This is a contradiction;
O cannot both decide fair and unfair .

Intuitively, the fair dice problem does not have a maximal
solution because it requires a process to make an oracular
decision about the future. Though it is not surprising that
an observer process cannot tell the future, there are correct
implementations of an observer process (namely, those that
always eventually decide fair).

Note that if the specification is weakened by removing
property O4, the resulting specification has a maximal solu-
tion. Furthermore, if the specification is strengthened by re-
placing O2 with invariant decision ∈ {undecided, fair} ,
the resulting specification has a maximal solution. This
implies that maximal implementability is non-monotonic in
the refinement hierarchy. It is possible that a specification
becomes not maximally implementable by strengthening or
weakening it (or, as in this case, either).

The fair dice problem is representative of specifications
for which a subset of correct behaviors are unimplementable
(e.g., predicting the future). A similar problem would be
requiring a process querying an eventually perfect (3P)
failure detector [7] to either make no claim about the
completeness and accuracy of its detector or to correctly
decide that its detector has entered its stable suffix. A
maximal process must be able to decide that it has reached
the stable suffix, which is not possible—such a process could
be used to implement a perfect (P) failure detector.

2.2. The Asynchronous Alarm Problem

The Asynchronous Alarm Problem is as follows: An alarm
process is monitoring a door. The alarm process queries the
door and receives a reply indicating whether or not the door
was closed or open when the door processed the query. If
door is ever open, the alarm process must raise an alarm.
The alarm process may issue a false alarm (i.e., it may raise
an alarm if the door is never opened), but it must not fail to
raise an alarm if the door is ever opened.

Formally, the specification for the alarm process is:

constant door (A1)
initially ¬alarm (A2)
stable alarm (A3)
door = open ; alarm (A4)

The family of behaviors defined by the alarm specifica-
tion are those where

• Eventually alarm is assigned true, or
• alarm remains false and door = closed holds

continuously.
The alarm specification is not maximally imple-

mentable; every correct alarm process must always even-
tually assign true to alarm .

Theorem 2.2. There is no maximal solution to the asyn-
chronous alarm problem.

Proof: To see why, assume there is a maximal imple-
mentation of the alarm specification, say A . Let ε be an
execution of A where door = closed holds continuously
and alarm is never assigned true.

Let ε′ be an execution of A in which the door is initially
open and subsequently closed before the first query by A .
The sequence of responses that A receives is then identical
to that in ε . Since A never assigns true to alarm in ε ,
it must also never assign true to alarm in ε′ given the
same sequence of responses. However, since A is correct,
by A4 alarm must eventually be assigned true. This is a
contradiction.

The asynchronous alarm problem has no maximal solution
because it requires an alarm process to be able to obtain
a complete history of the state of the door. Due to the
inherent asynchrony in the system and the fact that the door’s
response to a query only returns the current state of the door,
it is impossible for the alarm process to build this history.
In other words, a maximal alarm process must make a local
decision based events that is never guaranteed to observe.

So, while the fair dice problem had no maximal solu-
tion because an observer process could not tell the future,
the asynchronous alarm problem has no maximal solution
because it cannot have a complete picture of the past.

It is important to again note that this problem has maximal
solutions if the specification is either weakened or strength-

ened. The weaker specification comprised of A1, A2, and
A3 has a maximal solution, as does the stronger specification
in which A4 is replaced by

Hypothesis: stable door = open

Conclusion: door = open ; alarm

The asynchronous alarm problem is characteristic of
specifications where there are correct behaviors that are
isomorphic [8] to incorrect behaviors. As we will show, the
distributed strongly fair scheduling problem is a member of
this category.

3. The Distributed Strong Fairness Scheduling
Problem

The distributed strong fairness scheduling problem is a
distributed resource allocation problem that models scenar-
ios where a set of processes have conflicts over shared
resources and a process’s desire to access a shared resource
depends on other processes’ usage of the resource.

The problem was originally presented [9] in the context
of scheduling actions in a distributed system. A distributed
system is typically modelled as a set of actions, each of
which is either enabled or disabled. An execution of such a
system is a sequence of actions; a fairness criterion controls
what sequences of actions are valid executions of a system.
One of two notions of fairness is typically assumed: weak
fairness or strong fairness. Weak fairness dictates that each
action is infinitely often selected for execution, where strong
fairness dictates that if an action is infinitely often enabled,
it is infinitely often selected for execution.

Weak fairness is useful because of its minimal
assumption—any individual action that is continually en-
abled is eventually selected for execution—and the ease of
generating weakly fair schedules. Strong fairness is useful
for simplifying algorithms since it ensures that actions that
are repeatedly enabled are not starved. While weakly-fair
scheduling is easy because of the independent nature of
action selection, strongly-fair scheduling requires synchro-
nization and coordination and therefore is non-trivial to
implement.

Solutions to the strongly fairness scheduling problem can
be used to generate schedules of atomic actions that satisfy
the strong fairness criterion. However, the utility of the
problem extends beyond the scheduling of atomic actions;
solutions may be used to mediate access to shared resources
(be it shared memory, radio links in a sensor network, etc.)
in a strongly-fair fashion.

In the following, we formally define the distributed strong
fairness scheduling problem.

3.1. Description of the System

The system is a set of processes, each of which is
comprised of two components: a client and a scheduler.
The scheduler designer is given the specification of both
components and must design a refinement of the scheduler
specification.

Each process has an associated task that is either enabled
or disabled. When the task is enabled, the client may be
granted a lock. The client, upon being granted a lock, exe-
cutes the task. When the task completes the client releases
the lock.

While a task is executing, it may either enable or disable
the tasks belonging to other processes. This modification of
the states of other tasks is subject to the constraint that a task
may change the state of another task exactly once during its
execution1.

Two processes u and v are called neighbors if the
execution of u ’s task may affect the enabledness of v ’s
task or vice-versa. If the scheduler guarantees that no two
neighboring processes are holding locks concurrently, tasks
are guaranteed to eventually complete and the client must
eventually release a lock.

The scheduling layer is responsible for granting locks
to processes subject to the strong fairness criteria: if a
task is infinitely often enabled, its corresponding client
is infinitely often granted a lock. The system therefore
generates strongly-fair schedules—if a task is infinitely often
enabled it is infinitely often executed while it is enabled.

3.2. Formal Specification of the Distributed Strong
Fairness Problem

The system is comprised of a set of processes Π with a
symmetric neighbor relation N ⊆ P(Π) . For two processes
u and v , (u, v) ∈ N if the execution of u or v ’s task
may affect the enabledness of the other’s. N is irreflexive;
it is not the case that for any u , (u, u) ∈ N .

Each process u ∈ Π has the associated local variables:
• u.enabled , a boolean representing the enabledness

of u ’s task. If u.enabled is true then u ’s task is
enabled.

• u.lock , a boolean representing whether u holds a
lock. If u.lock is true then u may execute its task.

3.2.1. Client Specification. In our formalization of the
problem, we will not formalize the notion of a task. We
will subsume the effect that tasks have on the enabledness
of processes in the specification of the client component.

In the formal specification of the client component,
u.affectv is a specification variable indicating whether or

1. The problem where tasks are allowed to change the state of other tasks
more than once has no solution.

not u ’s task has affected the enabledness of v ’s task. In
the following, let v range over processes and a and b
range over B .

(∀ v : v 6= u : constant v.lock) (C1)
(∀ v : ¬N(u, v) ∧ v 6= u : constant v.enabled)

(C2)
stable ¬u.lock (C3)
invariant (∃ v :: u.affectv ⇒ u.lock) (C4)
(∀ v, b :: v.enabled = b unless u.affectv) (C5)
(∀ v, b :: v.enabled = b ∧ u.affectv next

v.enabled = b) (C6)
Hypothesis: stable u.lock,

invariant u.lock ⇒ u.enabled,
invariant (∀ v : N(u, v) : ¬(u.lock ∧ v.lock))

Conclusion: u.lock ; ¬u.lock (C7)

The first two properties of the client component (C1 and
C2) specify that a client cannot modify the lock variable of
any other process and that it may only affect the enabledness
of its neighbors. C3 restricts a client from granting itself a
lock. C4 requires that the specification variable u.affectv
is only true when u.lock holds. C5 requires that u may
only change the enabledness of a neighbor v when u.affectv
becomes true. This property, along with C4 and C6 (which
specifies that u may not change the enabledness of another
process while u.affectv is true) allows u to change the
enabledness of a neighbor at most once while u.lock holds.

The progress property C7 states that u eventually releases
a lock, provided: u.lock is not falsified by any other
process, u holds a lock only if u.enabled holds, and u
never holds a lock concurrently with a neighbor.

3.3. Scheduler Specification

The formal specification of the scheduler process is as
follows, where v ranges over processes:

(∀ v :: constant v.enabled) (S1)
(∀ v : v 6= u : constant v.lock) (S2)
stable u.lock (S3)
invariant u.lock ⇒ u.enabled (S4)
invariant (∀ v : N(u, v) : ¬(u.lock ∧ v.lock))

(S5)
Hypothesis: true ; u.enabled, C1–C7
Conclusion: true ; u.lock (S6)

Properties S1 and S2 specify that the scheduler for u may
not modify u.enabled nor v.lock for any other process v .
S3 ensures that a scheduler may not revoke a lock once it
has granted it and S4 ensures that a process only grants a

u

w

v

Figure 1. Example Instance of Strong Fairness Problem

lock if its client is enabled. S5 guarantees that a scheduler
will not grant a lock if a neighboring process holds a lock.

The progress property S6 guarantees that a process is
infinitely often granted a lock if it is infinitely often enabled
and the client process is correct.

3.4. Composed Specification

Given a correct implementation client of the client
specification and a correct implementation scheduler of
the scheduler specification, the composed system satisfies
the strong fairness property: if a task is infinitely of-
ten enabled, its client is infinitely often granted a lock
(and therefore infinitely often executes its task). Formally,
client ‖ scheduler satisfies:

invariant (∀u, v : N(u, v) : ¬(u.lock ∧ v.lock))
Hypothesis: true ; u.enabled

Conclusion: true ; u.lock

4. The Impossibility of a Maximal Distributed
Scheduler for Strong Fairness

The specification of the distributed strong fairness sched-
uler is implementable; there are schedulers that are capable
of generating strongly-fair schedules. However, there is no
maximal implementation of the scheduler specification. A
correct scheduler must necessarily be incapable of generat-
ing all strongly-fair schedules.

Informally, the reason there does not exist a maximal
strongly-fair scheduler is that a correct scheduler must
necessarily limit the concurrency of locks being held by two
non-neighboring processes with a shared neighbor. That is,
in any schedule generated by a correct scheduler, there is
a point in the schedule after which two processes with a
shared neighbor never concurrently hold locks, even though
they are not neighbors and therefore may be permitted to.

For example, in the system depicted by Figure 1 (where
nodes represent processes and edges represent the neighbor
relation), there is a point in every schedule generated by a
correct scheduler after which u.lock and v.lock never hold
concurrently. i.e., after a certain point, the execution of tasks
by u and v becomes serialized.

Consider the schedule s of the system in Figure 1 in
which process w is never enabled and processes u and

v are continually enabled and repeatedly are granted locks
concurrently. This schedule is correct; both u and v are
both infinitely often enabled and infinitely often hold locks.
However, if a scheduler were to be capable of generating
this schedule, it must also be capable of generating incorrect
schedules where w is infinitely often enabled and is never
granted a lock.

To see why, consider the schedule s′ where w is never
granted a lock and, as in s , u and w are both continu-
ally enabled and are repeatedly granted locks concurrently.
However, in s′ each time u is granted a lock it enables
w and each time v is granted a lock it disables w . This
schedule is clearly incorrect; w is infinitely often enabled
but is never granted a lock. Now suppose a scheduler is
capable of generating s . The same scheduler generates
s′ if the enabling and disabling of w occur without an
action of the scheduler being executed in the interim. As the
scheduler never observes w being enabled, the execution of
the scheduler that produced s must also produce s′ .

We begin a more formal treatment with the statement of
the main theorem:

Theorem 4.1. There is no maximal implementation of the
scheduler specification.

Proof: This follows directly from the following Lemma.

Lemma 4.1. Assume S is a correct implementation of the
scheduler specification. There does not exist an implementa-
tion C of the client specification such that S ‖ C is maximal
with respect to the distributed strong fairness specification.

Proof: By contradiction. Suppose S is a correct im-
plementation of the scheduler specification and for a con-
tradiction assume there does exist a client C such that
S ‖ C is a maximal solution to the distributed strong fairness
specification.

Let Π = {u, v, w} and N = {(u, w), (v, w)} (i.e.,
the system portrayed in Figure 1). Let γ be a trace of Π
where w never is enabled and never holds a lock and u
and v are continually enabled and are repeatedly granted
locks. Figure 2 is a graphical representation of γ ; the boxes
depict the state of each process’s lock variable in each step
of γ , where a black box indicates the process holds a lock
in that state and a white box indicates the process does not
hold a lock.

0 4 8

γ:
w
u
v ...

...

...

Figure 2. Trace of System

Formally, let γ be a trace where:

(∀ p :: ¬γ0(p.lock))
(∀ p : p ∈ {u, v} : (∀ i :: γi(p.enabled)))
(∀ i :: ¬γi(w.enabled) ∧ ¬γi(w.lock))
(∀ i : (i− 1) mod 4 = 0 ∨ (i− 2) mod 4 = 0 :

γi(u.lock))
(∀ i : (i− 2) mod 4 = 0 ∨ (i− 3) mod 4 = 0 :

γi(v.lock))
(∀ i : (i− 1) mod 4 6= 0 ∨ (i− 2) mod 4 6= 0 :

¬γi(u.lock))
(∀ i : (i− 2) mod 4 6= 0 ∨ (i− 3) mod 4 6= 0 :

¬γi(v.lock))

Let ε = 〈σ0α0σ1α1σ2 . . .〉 be an execution2 of S ‖ C
producing γ (since, by assumption, S ‖ C is maximal and
γ is clearly a correct trace, there exists such an ε).

Let C′ be the following program:

Program C′
assign

βp p.lock ∧ ¬p.set −→
(‖ q : N(p, q) :

q.enabled := ¬q.enabled)
‖ p.set := true

δp p.lock ∧ p.set −→
p.set, p.lock := false , false

To arrive at a contradiction, we will use ε to construct
an execution ε′ of S ‖ C′ that violates the strong-fairness
progress property by repeatedly enabling and disabling w
and never granting w a lock.

Let ε′ be the sequence ε′ = 〈σ′0α′0σ′1α′1σ′2 . . .〉 . Define

2. See the appendix for a formal definition of executions, traces, and
their relationship.

σ′i for all i by:

(∀x : x ∈ VS :
(∀ i : i mod 3 = 0 : σ′i(x) = σi/3(x)

(∀x : x ∈ VS \ {w.enabled} :
(∀ i : i− 1 mod 3 = 0 : σ′i(x) = σ(i−1)/3(x)

(∀ i : i− 1 mod 3 = 0 : σ(i−1)/3(u.lock)∧
¬σ(i+2)/3(b.lock) ⇔ σ′i(w.enabled)

(∀x : x ∈ VS : (∀ i : i− 2 mod 3 = 0 :
σ′i(x) = σ(i−2)/3(x)

And define α′i for all i by:

• if i mod 3 = 0 then:

βu if σ′i/3(u.lock) ∧ ¬σ′(i/3)+1(u.lock)

βw otherwise

• if i− 1 mod 3 = 0 then:

βv if σ′(i−1)/3(u.lock) ∧ ¬σ′(i−1)/3+1(u.lock)

δw otherwise

• if i− 2 mod 3 = 0 then:

α(i−2)/3 if α(i−2)/3 ∈ S
δu if σ′(i−2)/3(u.lock) ∧ ¬σ′(i−2)/3+1(u.lock)

δv if σ′(i−2)/3(v.lock) ∧ ¬σ′(i−2)/3+1(v.lock)

δw otherwise

Informally, ε′ is constructed by replacing every action in
ε with three actions. If an action αi in ε was an action of
S , αi is replaced by βuδuαi in ε′ . If the action αi in
ε is an action of C then it is replaced by βuβvδu if the
action corresponded to u or w releasing a lock or βwδwδv

if it did not. The construction of σ′ guarantees that each
action of S occurs in the same state as it did in ε and for
each α′i in ε′ , (σ′i, σ

′
i+1) ∈ α′i .

By the construction of ε′ , each action of S and C′
appear infinitely often. The proof that for all i , (σ′i, σ

′
i+1) ∈

α′i follows from the construction of ε′ and the definition of
programs given in the appendix. It follows from these two
properties that ε′ is a valid execution of S ‖ C′ .

By replacing actions of C with βuβvδu when u released
a lock in ε , each time u released a lock in ε corresponds
to a point in ε′ where w.enabled is assigned true and
subsequently assigned false.

Because u infinitely often holds a lock in ε , w is
infinitely often enabled in ε′ . However, w.lock never holds
in ε′ , violating the strong-fairness progress property (S6).
Since ε′ is a valid execution of S ‖ C′ , this contradicts the
assumption that S is correct.

4.1. Discussion

The problem of scheduling actions in a strongly-fair
manner under a weak fairness assumption was proposed
along with a non-maximal algorithm in [9]; a formalization
of the specification and a maximal solution was presented
in [5]. This, on the surface, seems to be at odds with our
result. However, the specification in [5] is strictly stronger
than the specification presented here—it requires tasks to
be atomic and be executed in a non-interleaved manner.
This sacrifice in generality allows the specification to have a
maximal solution. In fact, this highlights the observation that
maximal implementability may be achieved by strengthening
a specification.

The weakened specification presented here captures a
more diverse set of resource allocation scenarios, including
those where concurrency is a desired property. Furthermore,
this specification makes a minimal set of requirements on
a client process: client processes do not need to maintain
any state nor do they need to have knowledge of a task’s
characteristics, they simply need to execute a task and
release the lock when the task has completed.

Maximal general solutions to weakly-fair scheduling are
common [10], [11], [12]. The impossibility result presented
here means there are no such maximal algorithms for strong
fairness. Any maximal strongly-fair scheduler must be with
respect to a specialization of the problem.

5. Conclusions

This work establishes an impossibility result for maxi-
mal strongly fair scheduling. This result is the first of its
kind for UNITY specifications and programs. We also note
that the maximal-implementability of specifications is non-
monotonic with respect to refinement. Both of these obser-
vations lead to an important question: what is a complete
and precise characterization of specifications for which no
maximal solution exists?

In this work, we gave two examples of categories of
problems that have no maximal solution: those for which a
subset of behaviors are impossible to implement (telling the
future) and those for which there are correct behaviors that
are isomorphic to incorrect behaviors. A goal of continuing
work is to explore a precise and complete characterization of
UNITY specifications for which no maximal solution exists.

References

[1] R. Joshi and J. Misra, “Toward a theory of maximally
concurrent programs,” in PODC ’00: Proceedings of the nine-
teenth annual ACM symposium on Principles of distributed
computing. New York, NY, USA: ACM Press, 2000, pp.
319–328.

[2] G. Lyon, Nmap Network Scanning. Nmap Project, 2009.

[3] M. Smart, G. R. Malan, and F. Jahanian, “Defeating TCP/IP
stack fingerprinting,” in SSYM’00: Proceedings of the 9th
conference on USENIX Security Symposium. Berkeley, CA,
USA: USENIX Association, 2000, pp. 17–17.

[4] E. W. Dijkstra, “The humble programmer,” Communications
of the ACM, vol. 15, no. 10, pp. 859–866, 1972.

[5] M. Lang and P. A. G. Sivilotti, “A distributed maximal
scheduler for strong fairness,” in DISC, ser. Lecture Notes
in Computer Science, A. Pelc, Ed., vol. 4731. Springer,
2007, pp. 358–372.

[6] K. M. Chandy, Parallel program design: a foundation.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1988.

[7] T. D. Chandra and S. Toueg, “Unreliable failure detectors
for reliable distributed systems,” J. ACM, vol. 43, no. 2, pp.
225–267, 1996.

[8] K. M. Chandy and J. Misra, “How processes learn,” in PODC
’85: Proceedings of the fourth annual ACM symposium on
Principles of distributed computing. New York, NY, USA:
ACM, 1985, pp. 204–214.

[9] M. H. Karaata and P. Chaudhuri, “A self-stabilizing algorithm
for strong fairness,” Computing, vol. 60, no. 3, pp. 217–228,
1998.

[10] E. W. Dijkstra, “Hierarchical ordering of sequential pro-
cesses,” Acta Informatica, vol. 1, no. 2, pp. 115–138, 1971.

[11] K. M. Chandy and J. Misra, “The drinking philosophers
problem,” ACM Trans. Program. Lang. Syst., vol. 6, no. 4,
pp. 632–646, 1984.

[12] M. Lang and P. A. G. Sivilotti, “The maximality of unhygienic
dining philosophers,” The Ohio State University, Tech. Rep.
OSU-CISRC-5/07-TR39, 5, 2007.

Appendix

We formally give the definition of a program, a trace, an
execution of a program, and what it means for a trace to
satisfy a set of UNITY properties.

A program P is a collection of guarded actions. A state σ
is a function from program variables to values. Each action
α ∈ P is a relation on states; i.e., if action α is selected
for execution in a state σ and can result in the state σ′ ,
then (σ, σ′) ∈ α .

Actions are dependent on the program variables men-
tioned in the action. Let Vα be the set of variables men-
tioned by α . Then the following properties hold:

(∀σ, σ′, v : (σ, σ′) ∈ α ∧ v 6∈ Vα : σ(v) = σ′(v))
(∀σ, σ′, σ′′, σ′′′ :: (σ, σ′) ∈ α ∧ (∀ v : v ∈ Vα :

σ(v) = σ′′(v) ∧ σ′(v) = σ′′′(v))⇒
(σ′′, σ′′′) ∈ α)

Let VP denote the set of variables mentioned by P ;
VP =

⋃
α∈P

Vα .

A trace τ is an infinite sequence of states τ =
〈σ0, σ1, σ2, . . .〉 . We say τ is stutter-free if (∀ i :: σi 6=
σi+1 ∨ (∀ j : j ≥ i : σj = σj+1)) . We say a
trace τ ′ reduces to another trace τ if τ can be produced
by removing stuttering states from τ ′ (i.e., replacing σi ,
σi+1 with σi , σi+2 if σi = σi+1).

An execution ε of a program P is an infinite sequence of
the form ε = 〈σ0, α0, σ1, α1, σ2, . . .〉 , where each σi is a
state, each αi is an action of P , and for all i , (σi, σi+1) ∈
αi . An execution ε is fair if each action of P appears in
ε infinitely often.

The projection of a trace σ over a set of program
variables V is the trace σ′ where for all i and v ∈ V ,
σi(v) = σ′i(v) and for all v 6∈ V , σ′i(v) is undefined.

An execution ε = 〈σ0, α0, σ1, α1, σ2, . . .〉 produces a
trace σ = 〈σ′0, σ′1, σ′2, . . .〉 if (a) for all i , σi = σ′i , (b)
there exists a σ′ such that ε produces σ′ and σ′ reduces
to σ , or (c) ε produces a σ′ and there exists a set of
variables V such that σ is the projection of σ′ over V .

The value of a predicate P in a state σ is denoted as
P (σ) .

We now define when a trace σ satisfies UNITY proper-
ties. In the following, let P and Q be predicates, var be
a program variable, ν be a value, and let A0, . . . , An and
B0, . . . , Bm be sets of UNITY properties:

σ ` initially P if P (σ0)
σ ` P next Q if (∀ i :: P (σi) ⇒ Q(σi+1))
σ ` constant var if

(∀ ν :: σ ` (var = ν) next (var = ν) and
σ ` (var 6= ν) next (var 6= ν))

σ ` transient P if (∀ i :: (∃ j : j ≥ i : ¬P (σ)))
σ ` P ; Q if

(∀ i :: P (σi) ⇒ (∃ j : j ≥ i : Q(σj)))
σ ` A0, . . . , An if σ ` A0 and . . . and σ ` An

σ ` Hypothesis: A0, . . . , An Conclusion: B0, . . . , Bm if
σ ` A0 and . . . and σ ` An

⇒σ ` B0 and . . . and σ ` Bn

σ ` A if the projection of σ over the variables
mentioned by A, σ′, is such that σ′ ` A

It can be shown that for any program P proved correct
with respect to a UNITY specification A0, . . . , An the
following holds: for all traces τ of P , τ ` A0, . . . , An

3.

3. It should be noted that the converse is not true; proving a program
satisfies a property transient P requires that the program have a single
action that when executed in a state satisfying P results in a state satisfying
¬P .

