Remote Belief: Preserving Volition for Loosely Coupled Processes

Nuh Aydin (Kenyon College)
Paul Sivilotti (Ohio State University)

http://www.cis.ohio-state.edu/~paolo

Conclusions

- Knowledge too strict for loosely coupled systems
 Entails an undesirable loss of volition
- Define "belief" in distributed systems
 - Computation isomorphism
 - Use limits to handle unbounded computations
- Belief transfer is more permissive
 - Belief can increase/decrease with send
- Belief can increase/decrease with receive
- Simple theorems for manipulating belief
- But naive interpretations as probability are dangerous
- Examples
 - Directories for distributed components
 - Asynchronous leases

Remote Belief: Preserving Valition

Knowledge: Background

- What does it mean to "know"?
 - Philosophy, economics, game theory, ...
 - CS: AI, cog. science, distributed systems, ...
- Common thread:
 - indistinguishable worlds relative to a principal
- "I know Nuh is wearing a beige shirt"
 - Many possible states of the world right now
 - Could be sunny/raining in Columbus, OH
 - Could be sunny/raining in Pasadena, CA

■ But in all of them, Nuh's shirt is beige

Remote Belief: Preserving Volition

Distributed Systems

- Computation consists of 3 kinds of actions:
 - Internal actions, sends, and receives
- Indistinguishable worlds
 - P only sees actions *local to P*
 - $= \times = \langle e_p e_Q s_p r_Q e_p \rangle \quad y = \langle e_p s_p e_p r_Q \rangle \quad z = \langle e_Q e_p s_p e_p \rangle \qquad (e_p s_p e_p)$
- Interesting case: b is remote
 - From its observations, P can conclude b at Q
- Example: P knows Q has sent message m
- P receives m from Q
- Example: P knows printer's paper tray is empty
 - P receives "out of paper" from printer

Remote Belief: Preserving Volition

Knowledge Transfer

(For asynchronous systems and remote predicates)

- Knowledge is not gained or lost by internal actions
- (P knows b at x) = (P knows b at $(x;e_p)$)
- Knowledge can not be gained by sends
- (P knows b at x) \leftarrow (P knows b at (x;s_P)) ■ Knowledge is gained only by receives
- P receives "paper tray is empty"
- Knowledge can not be lost by receives
 - $\blacksquare \ (P \text{ knows b at } x) \Rightarrow (P \text{ knows b at } (x;r_P))$
 - Knowledge is lost only by sends
 - P sends "paper can be added to tray"

Remote Belief: Preserving Volition

Applications

- Two generals problem
 - P knows (Q knows (P knows (Q knows... b)))
 - Common knowledge can not be gained/lost
- Message complexity lower bounds
 - Detector knows computation has terminated
 - Requires (chain of) messages from all parties
- Distributed design by contract
 - Client must establish precondition before op
 - Assert: pre
 - Client knows pre

Remote Belief: Preserving Volition

Loss of Volition

- Once P knows b, for some remote b (on Q)
 - It must be true in all (isomorphic) computations
 - Q can not unilaterally violate b!
- Example:
 - P knows printer paper is empty
 - Printer is not allowed to add paper, without permission from P
- If P knows something about Q, Q has *lost* volition over that part of its state
 - Even sending a message does not allow Q to change that part of its state!

Remote Belief: Preserving Volition

Loosely Coupled Systems

- Some state can (should) not be controlled
 - Failure state is outside printer's control
 "printer is online"
 - Clients should be able to empty paper tray
 - "there is paper in the tray"
- Some processes may be unreliable
 - Q must wait for permission from P
 - This permission may never come!
 Crash, unreliable connectivity, maliciousness
- Knowledge may be inappropriate for loosely coupled systems
 - Soft-state, heart beat algorithms

Remote Belief: Preserving Volition

10

Defining Belief

 $[P]_x$: comp's isomorphic to x $[P_b]_x$: comp's isomorphic to x, and for which b holds

P knows b at $x = ([P_b]_x = [P]_x)$

 $P \text{ bel}_{\alpha} \text{ b at } x \equiv (|[P_b]_x| / |[P]_x| \ge \alpha)$

OHIO SIATE Problem: computations may be unbounded, so sets may be infinite (& quotient is indeterminate)

Remote Belief: Preserving Volition

12

Defining Belief

- Solution: use limit
 - \blacksquare T_N = set of computations of length <= N
 - Sequence $a_N = |T_N \cap [P_b]_x| / |T_N \cap [P]_x|$
 - lacksquare P bel_{α} b at $x \equiv (\lim_{N \to \infty} a_N \ge \alpha)$
- Another problem: limit may not exist
 - Solution: use lim inf (or lim sup)
 - lacktriangle No reason to prefer one over the other
 - Average
 - $\blacksquare \ P \ bel_{\alpha} \ b \ at \ x \equiv \frac{1}{2} (lim \ inf_{N \to \infty} a_N + lim \ sup_{N \to \infty} a_N) \geq \alpha$

Remote Belief: Preserving Volition

13

Belief is not Knowledge

- \blacksquare P knows b at $x \Rightarrow$ P bel₁ b at x
 - But not vice versa!
 - b holds in the limit, as longer computations in [P], are considered
 - b holds for all computations in [P]_x
- Example:
 - P and Q have only internal events
 - b = 2 or more internal events at Q
 - P bel₁ b at ϵ , but ¬(P knows b at ϵ)
- Exception: when computations are bounded

Remote Belief: Preserving Volition

1.1

Working with Knowledge

P knows $b \Rightarrow b$

(P knows b) \land (b \Rightarrow b') \Rightarrow P knows b'

(P knows b) \land (P knows b') \Rightarrow P knows (b \land b')

 $(P \text{ knows b}) \vee (P \text{ knows b}') \Rightarrow P \text{ knows (b } \vee \text{ b}')$

P knows (P knows b) = P knows b

P knows (\neg (P knows b)) = \neg (P knows b)

emote Belief: Preserving Volition

Working with Belief

 $P \text{ bel}_{\alpha} b \Rightarrow P \text{ bel}_{\beta} b, \beta \leq \alpha$

P belo b

 $P bel_{\alpha} b \wedge (b \Rightarrow b') \Rightarrow P bel_{\alpha} b'$

 $[(P bel_{\alpha} b) \land (P bel_{\beta} b') \Rightarrow P bel_{\max\{0,\alpha+\beta-1\}} (b \land b')$

 $(P bel_{\alpha} b) \wedge (P bel_{\beta} b') \Rightarrow P bel_{max\{\alpha,\beta\}} (b \vee b')$

 $(P \ bel_{\alpha} \ b) \lor (P \ bel_{\beta} \ b') \Rightarrow P \ bel_{min\{\alpha,\beta\}} \ (b \lor b')$

 $P bel_{\alpha} b = P knows (P bel_{\alpha} b)$

 $P bel_{\alpha} (Q knows b) \Rightarrow P bel_{\alpha} b$

P bel_{α} b = P bel_{$1-\alpha$} ¬b, for maximal α

Remote Belief: Preserving Volition

Belief Transfer: Receives

- Belief can increase or decrease as a result of a receive
- Example
 - Q has coin, initially heads or tails
 - Q sends this value to P
 - Initially:
 - P bel_{1/2} Q has heads
 - P bel_{1/2} Q has tails
 - After P receives message "heads":
 - P bel₁ Q has heads
 - P bel₀ Q has tails

Remote Belief: Preserving Volition

Belief Transfer: Sends

- Belief can decrease or increase as a result of a send
- Example
 - Q has a coin, initially in random state
 - Q receives message and sets coin accordingly
 - Initially:
 - P bel_{1/2} Q has heads
 - P bel_{1/2} Q has tails
 - After P sends message "set to heads"
 - P bel₁ Q has heads
 - P bel₀ Q has tails

Remote Belief: Preserving Volition

1

Eg: Directories

- RMI registry, CORBA Naming, UDDI
- Contains information about remote objects
 - IP address, string name, interface information
 - Initialized by receiving a message
- This entry does not reflect knowledge
 - Object would require directory's permission to change its attributes
- Instead, entry reflects belief
 - Directory believes remote objects have given properties, with appropriate threshold α

Remote Belief: Preserving Volition

Conclusions

- Knowledge too strict for loosely coupled systems
 - Entails an undesirable loss of volition
- Defined "belief" in distributed systems
 - Computation isomorphism
- Limits to handle unbounded computations
- Belief transfer is more permissive
 - Belief can <u>increase</u>/decrease with send
 - Belief can increase/decrease with receive
- Simple theorems for manipulating belief
- But naive interpretations as probability are dangerous
- Examples

OHIC SIATI

- Directories for distributed components
- Asynchronous leases

Remote Belief: Preserving Volition

Future Work

- Probabilities and measures
 - Computations can be weighted according to some probability model
 - Use more general measures
- Investigation of chained belief
 - \blacksquare P₁ bel_{α 1} (P₂ bel_{α 2} (P₃ bel_{α 3} ... (P_n bel_{α n} b)))
- Investigation of common belief
 - Reformulations of consensus around belief

Remote Belief: Preserving Volition

Acknowledgements

- Distributed Components research group at Ohio State
 - Scott Pike, Nigamanth Sridhar, Murat Demirbas, Hilary Stock, Chris Bohn
- Funding sources:
 - National Science Foundation (ITR)
 - SBC Ameritech
 - Lucent Technologies
 - Ohio Board of Regents

Remote Belief: Preserving Volition

1

Outline

- Background in knowledge
 - Knowledge transfer
 - Learn by receiving, forget by sending
- Definition of Belief
 - Limits ensure it is well-defined
 - Belief transfer
 - Gain/lose belief by receiving or sending
- Examples:
 - Directories for distributed components
 - Asynchronous leases
- Conclusions

Remote Belief: Preserving Volition

Remote Belief: Preserving Volition for Loosely Coupled Processes

Nuh Aydin (Kenyon College)
Paul Sivilotti (Ohio State University)

http://www.cis.ohio-state.edu/~paolo

Model of Computation

- Process computation
 - lacktriangle Finite sequence of events
 - Every process has a set of possible sequencesPrefix closed
- System computation
 - Finite sequence of events
 - Every projection is a process computation
 - Every receive has a corresponding send

 $x = \langle e_P S_h e_P e_P R_h e_P e_Q \rangle$

Remote Belief: Preserving Volition

