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Abstract

Safety is often viewed as a quantity to be traded off for better performance. In our work, we look to provide safety verification tools and techniques that enhance

rather than compromise on performance. Here, we examine two examples. Modern adaptive cruise control technologies are designed to improve the comfort

or safety of the driver; however, no safety guarantees are asserted by these designs. Furthermore, existing theoretical work in the safety verification of adaptive

cruise control algorithms require both discrete braking modes and overly conservative separation distances to make such safety guarantees. Thus, existing

work in safety verification both risks reducing driver comfort while also eliminating any of the performance gains typically associated with automated highways.

Our work extends verification of automated highway systems to mitigate both of these problems. Motivated by optimal control and verification of software

systems, we have developed safety conditions for adaptive cruise control algorithms that do not require discontinuous braking and also allow for substantially

lower following distances than existing work in the verification of autonomous highway systems. Moreover, we demonstrate a novel approach for verifying

software in hybrid systems by embedding the continuous dynamics into the software specifications. The result is a verified software paradigm consistent with

the vision of Hoare’s verifying compiler. Finally, we shift gears to consider how variable yellow timing and a new encoding of traffic light signals can be used to

guarantee safe intersections that also reduce fuel consumption.
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Adaptive Cruise Control (ACC)

Conventional Verification of ACC: WCS

• Assume global upper and lower braking bounds

• Assume worst-case scenario (WCS)

– Leader uses strongest braking behavior

– Follower uses weakest braking behavior

• Safe distance grows with braking interval
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Possible behaviors using worst-case bounds

 

 

Specifications using worst-case stopping distances

• Worst-case and best-case scenarios are shown.

In each:

– Leader is solid blue

– Follower is dashed red

• WCS is depicted by intersecting lines

– Automated proof of safety is relatively simple

• For realizations where follower braking is con-

trolled as opposed to unknown, the WCS safe-

braking distance is overly conservative

Heterogeneous ACC with Braking Control

• Follower’s weakest braking bound is controlled

• Upper bound on each leader is inferred

– e.g., plate tag indicates braking category

• Safety does not follow from stopping distances
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Collision scenario despite safe braking distance

 

 

Collision Although Safe Stopping-Distance

• Non-trivial braking constraints for follower

– Verification is more challenging
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Bounded acceleration prevents collision

 

 

Marginally Safe Stop after Evasive Acceleration

Mixed-Traffic Adaptive Cruise Control

Verifying Cyber-Physical Systems

Conventional verification: either model or software
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CPS Concrete–Abstract Correspondence

To combine the two:

havoc dt

assume 0.0 < dt and dt < rho

physical loop

maintains

bl = #bl and bf = #bf and

afMax = #afMax and rho = #rho and

af = #af and dt = #dt and

0.0 <= t and t < rho + dt and

vl = VEL(#vl, -bl, t) and

xl = POS(#xl, #vl, -bl, t) and

vf = VEL(#vf, af, t) and

xf = POS(#xf, #vf, af, t) and

xl >= xf

while IsGreater (rho, t) do

variable zero, dv, dx: Real

dv := Replica (dt)

Multiply (dv, bl)

Subtract (vl, dv)

if IsGreater (zero, vl) then

Clear (vl)

end if

dx := Replica (dt)

Multiply (dx, vl)

Add (xl, dx)

dv := Replica (dt)

Multiply (dv, af)

Add (vf, dv)

if IsGreater (zero, vf) then

Clear (vf)

end if

dx := Replica (dt)

Multiply (dx, vf)

Add (xf, dx)

Add (t, dt)

end loop

Augment Annotated Code with Physical Loop

Prove:

VEL (vl4, −bl0, t11) − dt9 × bl0
= VEL (vl4, −bl0, t11 + dt9)

Given:

0.0 < bl0
0.0 < bf0
0.0 < afMax0
bf0 ≤ bl0
0.0 < rho0
MINGAP (vl2, bl0, vf2, bf0, afMax0, rho0)

≤ xl2 − xf2
0.0 ≤ vl2
0.0 ≤ vf2
0.0 ≤ vl4
0.0 ≤ vf4
MINGAP (vl4, bl0, vf4, bf0, afMax0, rho0)

≤ xl4 − xf4 −bf0 ≤ af8
af8 ≤ afMax0
MINGAP (VEL (vl4, −bl0, rho0),

bl0, VEL (vf4, af8, rho0),

bf0, afMax0, rho0)

≤ POS (xl4 − xf4, vl4, −bl0, rho0)

− POS (0.0, vf4, af8, rho0)

0.0 < dt9
dt9 < rho0
t11 < rho0
0.0 ≤ t11
t11 < rho0 + dt9
POS (xf4, vf4, af8, t11)

≤ POS (xl4, vl4, −bl0, t11)

0.0 ≤ VEL (vl4, −bl0, t11) ≤ dt9 × bl0
VEL (vf4, af8, t11) + dt9 × af8 < 0.0

Example Verification Condition (VC)

Urban Traffic Control

Safe Efficient Intersection Crossing Guards

With little vehicle-to-infrastructure communication,

physical inertia can be used to project mutual ex-

clusion distances (i.e., reachability sets).

• Signalling guards can be designed that maintain

safety with minimal yellow-time losses.

• The system can operate in mixed environments

of human and autonomous drivers.

• With introduction of one additional signal color,

fuel efficiency can be improved by preventing un-

necessary deceleration.

Safety invariants are guaranteed, which provides

the opportunity for separating designs for safety

and optimization.

Yellow Guards for Variable Cycle Times

Goal: Minimize simultaneous red

Access direction

<crossing guard> → <light>

t > 0 ∨ x + v2/(2b) ≤ ix → green

t ≤ 0 ∧ x + v2/(2b) > ix → yellow

(a simplified example)

Yellow light times are minimized while still allowing

cycle times to vary to ensure safety invariants.

Blue Lights for Fixed Cycle Times

Goal: Maximize simultaneous green

Blocked direction

<crossing guard> → <light>

tMUTEX > t ∨ (tARR ≥ t ∧ tDEP < t + T ) → blue

tMUTEX ≤ t ∧ (tARR < t ∨ tDEP ≥ t + T ) → red

(an overly simplified example)

When cycle times are fixed, red lights waste the

fuel for vehicles whose reachability sets are far from

the intersection. Consequently, a blue color can be

introduced to the blocked direction that indicates

when braking behavior is not warranted.

Given Safety, Compare Performance

Once guards are provided that guarantee safety in-

variants, alternate switching protocols can be com-

pared either theoretically or empirically to improve

throughput or fuel performance of intersections.
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