A World-Wide Distributed System Using Java and the Internet

K. Mani Chandy, Adam Rifkin, Paolo A.G. Sivilotti,
Jacob Mandelson, Matthew Richardson, Wesley Tanaka, and Luke Weisman *
Computer Science Department 256-80
California Institute of Technology
Pasadena, California 91125
{adam,mani,paolo} @cs.caltech.edu
http://www.cs.caltech.edu/~adam/CALTECH/infospheres.html

Abstract

This paper describes the design of a distributed sys-
tem built using Java that supports peer-to-peer commu-
nication among processes spread across o network. We
identify the requirements of a software layer that sup-
ports distributed computing, and we propose a design
that meets those requirements. Our primary concerns
are (1) the identification, specification, and implemen-
tation of software components that can be composed
in different ways to develop correct distributed appli-
cations; (2) reasoning about the components systemat-
ically; and (3) providing services to the components.
This paper deals with the last of these concerns.

Though our implementation uses Java, the funda-
mental ideas apply to any object-oriented language that
supports messaging and threads. Alternative imple-
mentations use such languages coupled with object re-
quest brokers or remote procedure invocation mecha-
nisSMS.

Key words: Distributed systems, collaborative
environments, program composition, distributed ob-
jects, multithreaded objects, World Wide Web, Java.

1. Introduction

Overview. Millions of people use the World Wide
Web for information exchange and for client-server ap-
plications. Widespread use has led to the development
of a cottage industry for producing Web-based doc-
umentation; large numbers of people without formal
education in computing are developing server applica-

*This work has been submitted to the IEEE for possible publi-
cation. Copyright may be transferred without notice, after which
this version may no longer be accessible.

tions on the Web. This paper describes a project to use
the Web as a distributed system with peer-to-peer pro-
cess communication across the Global Information In-
frastructure (GII). The focus of our project is on iden-
tifying and specifying software components that can
be composed to create distributed applications, im-
plementing the software components as classes in an
object-oriented framework, developing a compositional
methodology for constructing correct distributed ap-
plications from the components, and implementing a
library of applications that demonstrates the method-
ology.

Our project develops methods and tools for dis-
tributed programming applications layered on top of
standard network technologies. Though our implemen-
tation uses Java, we could have used any other object-
oriented language that supports threads and commu-
nication classes.

Correctness. Our project deals with providing soft-
ware components and compositional methods that sup-
port the development of verifiably correct distributed
applications. The methods employed by Web users for
developing client-server applications are not the best
methods for developing correct peer-to-peer distributed
applications. Furthermore, approaches for debugging
sequential programs are inadequate for ensuring cor-
rectness in distributed applications. Our challenge is
to deal with the difficult problems of distributed sys-
tems — problems such as deadlock, livelock, and send-
ing unbounded numbers of messages — that are not
issues in sequential programs.

Contrast with Traditional Distributed Systems.
Certain kinds of distributed systems are inherently
complex, deal with myriad functions, have strict perfor-

mance requirements, and have disastrous consequences
of failure; examples of these systems include applica-
tions in telemedicine, air traffic control, and military
command. Such systems are developed in a painstak-
ing manner, with each system design led by a single
group of expert designers that has primary responsibil-
ity for the entire system. By contrast, many Web-based
applications are relatively simple, are collaborative by
nature, have limited functionality, are performance-
limited by the GII, and may be developed by people
who are not experts in concurrent computing; small
examples of such systems are the calendar application
and collaborative environments described in Section
2.1. Designers of such applications have little control
over the networks, protocols, operating systems, and
computers on which their applications execute.

Research issues for the two classes of distributed sys-
tems are somewhat different. The former class of dis-
tributed systems, the class on which human lives de-
pend, is extremely important and has benefited from a
great deal of research (c.f., the surveys of critical dis-
tributed systems issues in [4, 10]). This paper, how-
ever, deals with facilitating the development of the
latter class of applications. The class of collabora-
tive Web-based applications has interesting engineer-
ing challenges that differ from those in traditional dis-
tributed applications,

Structuring Collaborative Applications: Com-
positional Units. The focus of our research is the
development of theories and tools for the systematic
structuring of distributed applications. A central as-
pect of this research is the identification of appropriate
units of composition. We are exploring designs using
two flavors of compositional units, where each kind has
its own methods of reasoning. The two kinds are dap-
plets (which are multithreaded, communicating objects),
and sessions (which are groups of composed dapplets).

A dapplet is specified in terms of the way it processes
messages that arrive at its input ports. A dapplet han-
dles a message by possibly changing its state and send-
ing messages on its output ports. For example, the
specification of a calendar manager dapplet provides
the way the dapplet handles messages requesting ap-
pointments and cancellations arriving at its input ports
from superiors, peers, and subordinates.

Dapplets are composed together, in parallel, to form
distributed sessions. A session is a temporary network
of dapplets that carries out a task such as arranging
a meeting time for a group of people. Sessions need
not be static collections of dapplets; after initiation,
their membership may grow and shrink. A session is
specified in terms of a state transition: the state of

component processes at the point in the computation
at which the session is initated and the corresponding
states at the point at which the session terminates. The
specification of a session that sets up a common meet-
ing time is in terms of the states of the calendars of the
component dapplets at the initiation and termination
of the session. The focus of this paper is on providing
services to sessions.

2. Requirements

We describe two simple example applications to mo-
tivate a Web-based distributed system, and present a
requirements analysis for such a system and a design
for meeting those requirements.

2.1. Two Example Applications

Example One: A Calendar Application. A con-
sortium of institutions forms a research center, and the
executive committee of the center has members from
its component institutions. The director of the center
wants to pick a date and place for a meeting of the
executive committee. Several algorithms (c.f., [4, 10])
can be used to solve this problem.

The traditional approach has one individual call
each member of the committee repeatedly, and negoti-
ate with each one in turn until an agreement is reached.
The approach we propose (as illustrated in Figure 1)
is to employ secretary and calendar processes — pro-
grams running concurrently on each committee mem-
ber’s desktop computer — to suggest a set of candi-
date dates that can then be approved or rejected by
the members.

Each member of the committee has a calendar pro-
cess — a dapplet — responsible for managing that
member’s calendar. There may in addition be secre-
tary dapplets (as shown in Figure 1), or possibly a
coordinator dapplet. The dapplets are composed to-
gether into a temporary network of dapplets that we
call a session. The task of the session is to arrange a
common meeting time. When this task is achieved, the
session terminates.

Example Two: Collaborative Distributed De-
sign. A group of people, working at different sites,
collaborate on the design of a system. Management
of design documents requires that modifications to
parts of the document are communicated to appropri-
ate members of the design team. As the use of consul-
tants and virtual corporations becomes more common,
the need for “wiring up” different groups of people in

Caltech ' RiceUniversity

Linda's
calendar
dapplet

Ginger's
calendar
dapplet

University of
Tennessee

Figure 1. A session coordinating committee members
at Caltech, Rice, and Tennessee. Note that each dap-
plet is running on a different computer, and the arrowed
lines represent communication between distributed pro-
cesses over the Internet.

different ways for different tasks becomes more impor-
tant.

Each member of the design team has a dapplet re-
sponsible for managing that member’s part of the de-
sign. The collection of dapplets forms a network — a
session — that lasts as long as the design.

2.2. Characteristics of Applications

Temporary Duration. In many collaborative ap-
plications, a distributed session is set up for a period of
time, after which the session is discarded. For instance,
calendar dapplets of the executive committee are linked
together into a dapplet-network session, and after the
dapplets agree on a meeting date and time, the session
terminates. Some distributed sessions may have longer
duration. For instance, in our second example, the dis-
tributed session of participants in a system design lasts
as long as the design.

Durations of distributed sessions in collaborative ap-
plications can vary widely. By contrast, traditional dis-
tributed systems such as command and control systems
are semi-permanent. The challenge is to develop a soft-
ware layer that supports distributed sessions with wide
variations in duration.

Persistent State Across Multiple Temporary
Sessions. In our first example, the state of an ex-

ecutive committee member’s appointments calendar
must persist; an appointments calendar that disap-
pears when an appointment is made has no value.

Different parts of the state may be accessed and
modified by different distributed sessions. For instance,
a distributed session to set up an executive commit-
tee meeting may have access to Mondays and Fridays
on one user’s calendar, but not to other days, and a
distributed session to inform collaborators about the
status of a document may have access to document in-
formation but not to the calendar.

The state of a process may be accessed and modified
by multiple concurrent sessions. Each session (e.g., a
calendar session or a document management session)
only has access to portions of the state relevant to that
session. The specification of a session must be indepen-
dent of other sessions with which it may be executing
concurrently. Two sessions must not be allowed to pro-
ceed concurrently if one modifies variables accessed by
the other.

The challenge is to provide the distributed infras-
tructure that sets up sessions that modify the persis-
tent states of their participants, allows a member to
participate in concurrent sessions, and ensures that ses-
sions that interfere with each other are not scheduled
concurrently.

Composition of Services. Traditional distributed
systems (e.g., systems described in [16]) are architected
in a series of well-defined layers, with each layer pro-
viding services to the layer above it and using ser-
vices of the layer below. For instance, a distributed
database application employs services — e.g., check-
pointing, deadlock detection, and transaction abortion
— of the distributed operating system on which it runs.

A session also needs operating system services. The
model of application development for sessions and dap-
plets is, however, very different from that in traditional
systems. We do not expect each dapplet developer
to also develop all the operating systems services —
e.g., checkpointing, termination detection, and mul-
tiway synchronization — that an application needs.
Our challenge is to facilitate the development of a li-
brary of operating systems services (which we could
call servlets) that dapplet developers could use in their
dapplets, as needed.

Coping with a Varied Network Environment.
Communication delays can vary widely. One process in
a calendar application may be in Australia while two
other processes are in the same building in Pasadena.
Our challenge is to design the system to cope with these

delays; in addition, the system must also cope with
faults in the network such as undelivered messages.

Patterns of Collaboration. In distributed appli-
cations, it is more difficult to verify the correctness
of the concurrent and distributed aspects than it is
to verify the sequential programming aspects. The
difficult parts of a distributed system design include
the correct implementations of process creation, com-
munication, and synchronization. However, we can
ease the programmer’s burden of writing correct dis-
tributed applications, if modifying one distributed ap-
plication to obtain another one with the same patterns
of communication and synchronization can be done by
modifying only the sequential parts of the application
while leaving the concurrent and distributed parts un-
changed. Our challenge is to identify these patterns,
develop class libraries that encapsulate these patterns,
and construct a library of distributed applications that
demonstrate how common collaboration patterns can
be tailored to solve a specific problem by modifying the
sequential components.

3. Distributed System Design

In this section, we describe our vision of how our dis-
tributed system will be used, and present an overview
of our design as it is currently implemented.

3.1. Intended System Use

Consider the example of a center director setting up
an executive committee meeting with members from
different sites. Prior to the session, each committee
member has installed a calendar dapplet. A calen-
dar dapplet is a process: it operates in a single ad-
dress space, it communicates with files by standard I/O
operations, and it communicates with other processes
through ports. Associated with each dapplet is an In-
ternet address (i.e., IP address and port id); the port
id may change, but that is not our concern at this stage
in the discussion.

A session is an instance of an application, imple-
mented as a network of dapplets. A session consists
of many different types of dapplets. For instance, a
calendar application may have calendar user processes
and secretary processes. Programs corresponding to
each process type are installed on the appropriate ma-
chines; for the session in Figure 2, the calendar user
dapplets and secretary dapplets are processes running
on their respective users’ desktop computers.

Associated with each session is an initial process —
an initiator dapplet — that is responsible for linking

I I
| Center Director |
]

I
,,,,, PR
I

I
Invokes and
Sends Addtess Directory

' Initiator
i

\\\ dapplet ," Links together dappletsin asession

Figure 2. Aninitiator uses the invoker’s address directory
to set up a session between existing dapplets.

dapplets together. In our example, the center director
invokes an initiator dapplet, and passes it a directory
of addresses (e.g., Internet IP addresses and ports) of
component dapplets that are to be linked together into
a session, as illustrated in Figure 2. We do not address
how this directory is maintained in this paper.

Dapplet connections are achieved using the address
directory. The initiator dapplet sends a request to the
component dapplets; this request asks the components
to link themselves up to form a session. For example,
in our calendar session, each calendar user dapplet may
be linked to a common coordinating secretary dapplet,
as is done in Figure 2. As another example, in a dis-
tributed card game session, a player dapplet may be
linked to its predecessor and successor player dapplets
(which correspond to the players to its left and right,
respectively).

A dapplet, on receiving a request to participate in
a session, may accept the request and link itself up, or
it may reject the request (because the requesting dap-
plet was not on its access control list, or because it is
already participating in a session and another concur-
rent session would cause interference). We postpone
consideration of which actions the initiator could take
if a session cannot be established. When a session ter-
minates, component dapplets unlink themselves from
each other.

3.2. Overall Distributed System Design

Our distributed system implementation is written in
the Java language [7], and uses Java socket classes [8]
and thread primitives (like the ones described in [1]).
The initial implementation uses UDP [13, 15], and it
includes a layer to ensure that messages are delivered
in the order they were sent.

We describe the overall design, and highlight the

software components we believe are useful for develop-
ing distributed applications. Our goal is to design a
simple layer to support correct distributed application
development; we employ Java features and Java classes
to achieve this end.

Messages. Objects that are sent from one process to
another are subclasses of a message class. An object
that is sent by a process is converted into a string, sent
across the network, and then reconstructed back into
its original type by the receiving process. Java methods
are used to convert an object to a string and to create
an instance of the sending object at the receiver.

Inboxes, Outboxes, and Channels. Fach process
has a set of inbozres and a set of outbozres. Inboxes and
outboxes are message queues. A process can append a
message to the tail of one of its outboxes, and it can
remove the message at the head of one of its inboxes.
The methods that can be invoked on inbox and outbox
objects are described later. Each inbox has a global
address: the address of its dapplet (i-e., its IP address
and port) and a local reference within the dapplet pro-

Cess.
dapplet 3 inbox
@
dapplet 1 dapplet 4inbox
dapplet 4
dapplet 2 outhox @

dapplet 2 dapplet 5inbox

dapplet 1 outbox

SHICH

L

dapplet 5

Figure 3. An example of dapplet inbox and outbox con-
nections: dapplet 1's outbox is bound to dapplet 4's in-
box; dapplet 2's outbox is bound to the inboxes of dap-
plets 3, 4, and 5.

Associated with each outbox is a set of inboxes to
which the outbox is bound; there is a message channel
from an outbox to each inbox to which it is bound; an
example of a set of bound dapplet inboxes and outboxes
is given in Figure 3. Each message channel is directed
from exactly one outbox to exactly one inbox. Mes-
sages sent along a channel are delivered in the order
sent. Message delays in channels are arbitrary.

As shown in Figure 3, an outbox can be bound to
an arbitrary number of inboxes. Likewise, an inbox can

be bound to an arbitrary number of outboxes. There-
fore, there are an arbitrary number of outgoing chan-
nels from an outbox, and there are an arbitrary number
of incoming channels to an inbox.

The distributed computing layer removes the mes-
sage at the head of a nonempty outbox and sends a
copy of the message along all channels connected to
that outbox. The network layer delivers a message in
a channel to the destination inbox of the channel. The
delay incurred by a message on a channel is arbitrary;
the delay is independent of the delay experienced by
other messages on that channel, and it is independent
of the delay on other channels. Also, if a message is
not delivered within a specified time, an exception is
raised.

Methods Invoked on Outboxes. An outbox has a
data member inboxes, which is a list of addresses of
inboxes to which the outbox is bound. The application-
layer methods that can be invoked on outboxes are:

1. add(ipa) where ipa is the global address of an
inbox; this method appends the specified inbox
to the list inboxes if it is not already on the
list. There is a directed FIFO channel from each
outbox to each inbox to which it is bound.

2. delete(ipa) removes the specified global ad-
dress from the list inboxes if it is in the list,
and otherwise throws an exception.

3. send(msg) where msg belongs to a subclass of
message; this method sends a copy of the object
msg along each output channel connected to the
outbox. If this message is not delivered within a
specified time, an exception is raised.

4. destination() returns inboxes.

Methods Invoked on Inboxes. The application-
layer methods that can be invoked on inboxes are:

1. isEmpty() returns true if the inbox is empty.

2. awaitNonEmpty() suspends execution until the
inbox is nonempty.

3. receive() suspends execution until the inbox is
nonempty and then returns the object at the head
of the inbox, deleting the object from the inbox.

Strings as Names for Inboxes. As a convenience,
we also allow each inbox to be addressed by a pair:
its unique dapplet address (IP address and port) and
a string in place of its local id. For instance, a pro-
fessor dapplet may have inboxes called “students” and

“grades” in addition to inboxes to which no strings are
attached. An outbox of a dapplet can be bound to the
“student” inbox of a professor dapplet. The add and
delete methods of a dapplet are polymorphic: an in-
box can be either specified by a global address (dapplet
address and local reference) or by a dapplet address and
string.

Communication Features. Our simple communi-
cation layer, when used with objects and threads, can
provide features present in more complex systems.

Some languages, such as CC++ [2], have a two-level
hierarchy of address spaces: a global address space and
a collection of local address spaces. So, pointers are of
two kinds: global and local. A global pointer in one
local address space can point to an object in any local
address space. By contrast, a local pointer in a local
address space can point only to objects in that local
address space. Remote procedure calls (RPCs) on an
object in a different local address space can be executed
only if the invoker has a global reference to that object.

By contrast, in our Java implementation, all refer-
ences are local, with the exception that dapplets and
inboxes have global addresses. An outbox in one dap-
plet can bind to inboxes in other dapplets. Addresses
of inboxes and dapplets can be communicated between
dapplets.

Global pointers and RPCs are implemented in our
Java system in a straightforward way: Associate an
inbox b with an object p. Messages in b are direc-
tions to invoke appropriate methods on p. Associate
a thread with b and p; the thread receives a message
from b, and then invokes the method specified in the
message on p. Thus the address of the inbox serves
as a global pointer to an object associated with the
inbox, and messages serve the role of asynchronous
RPCs. Synchronous RPCs are implemented as pair-
wise asynchronous RPCs.

4. Software Components

In this section, we consider the problem of compos-
ing services with dapplets, and give thoughts about
how to extend our implementation described in the last
section with useful services for dapplets. The challenge
is to make these services generic, so that they can be
used for very different kinds of applications, and make
the services powerful enough to simplify the design of
dapplets.

We focus our discussion here on inter-dapplet ser-
vices. Methods for coordination within a dapplet use
standard Java classes [14]. The questions we address
are: How can objects associated with a service be

bound into a dapplet in a straightforward way, and,
what sorts of services are helpful for dapplet design-
ers?

There are complementary ways of providing services
to dapplets. We can provide a collection of service
objects that a designer can include in a dapplet. Or,
we can have a resource manager process, executing on
each machine, that provides a rich collection of services
to dapplets executing on that machine. Our focus in
this paper is on the former approach; we give a few
examples of service objects and show how these services
can be used within a dapplet.

4.1. Tokensand Capabilities

Distributed operating systems manage indivisible
resources shared by processes [16]; we would like to
provide service objects with this functionality, which a
dapplet designer can incorporate as needed. A problem
is that generic service objects do not have information
about the specific resources used in a given application.

A solution is to treat indivisible resources in a
generic way. The generic service deals with manag-
ing indivisible resources, sharing them among dapplets
in a way that avoids deadlock (if dapplets release all
resources before next requesting resources), and detect-
ing deadlock if it does occur (if a dapplet holds on to
some resources and then requests more). The designer
of a dapplet can separate these service functions from
other concerns, and using a library of common service
functions can simplify dapplet design.

We treat each resource as a token. Tokens are ob-
jects that are neither created nor destroyed; a fixed
number of them are communicated and shared among
the processes of a system. Tokens have colors; tokens of
one color cannot be transmuted into tokens of another
color. A token represents an indivisible resource, and
a token color is a resource type. A file, for instance, is
represented by a token and each file-token has a unique
color.

A network of token-manager objects manages tokens
shared by all the dapplets in a session. A token is either
held by a dapplet or by the network of token managers.
A token manager associated with a dapplet has a data
member, holdsTokens, which is the number of tokens
of each color that the dapplet holds.

A process can carry out the following operations on
its token manager.

1. request(tokenList) suspends until the tokens
requested (i.e., a specified number for each color)
are available, and then these tokens are removed
from the token manager collection and given
to the dapplet (i.e., these tokens are added to

holdsTokens). If the token managers detect a
deadlock, an exception is raised. A specific pos-
itive number of tokens of a given color can be
requested or the request can ask for all tokens of
a given color.

2. release(tokenList) releases the specified to-
kens from the dapplet and returns them to the
token managers; therefore, the specified tokens
are decremented from holdsTokens and returned
to the token managers. If the tokens specified in
tokenList are not in holdsTokens, an exception
is raised.

3. totalTokens() returns an array of the total
number of tokens of all colors in the system.

The dapplet that constructs the network of token
managers ensures that the initial number of tokens is
set appropriately. Tokens are defined by the invariant
that the total number of tokens of each color in the
system remains unchanged.

Tokens can be used in many ways. For example,
suppose we want at most one process to modify an
object at any point in the computation. We associate
a single token with that object, and only the process
holding the token can modify the object.

As another example, tokens can be used to imple-
ment a simple read/write control protocol that allows
multiple concurrent reads of an object but at most one
concurrent write (and no reads concurrent with a write)
of the object. The object is associated with a token
color. A dapplet writes the object only if it has all
tokens associated with the object, and a dapplet reads
the object only if it has at least one token associated
with the object.

4.2. Clocks

Access to a global clock simplifies the design of many
distributed algorithms. For instance, a global state can
be easily checkpointed: all processes checkpoint their
local states at some predetermined time 7', and the
states of the channels are the sequences of messages
sent on the channels before T and received after T'.

Another use of global clocks is for distributed con-
flict resolution. Each request for a set of resources
is timestamped with the time at which the request
is made. Conflicts between two or more requests for
a common indivisible resource are resolved in favor of
the request with the earlier timestamp. Ties are broken
in favor of the process with the lower id. If dapplets
release all resources before requesting resources, and
release all resouces within finite time, then all requests
will be satisfied.

The problem is that dapplets do not share a global
clock. Though local clocks are quite accurate they are
not perfectly synchronized. We can, however, use un-
synchronized clocks for checkpointing provided they
satisfy the global snapshot criterion [3]. The global
snapshot criterion is satisfied, provided every message
that is sent when the sender’s clock is T, is received
when the receiver’s clock exceeds T. A simple algo-
rithm [9] to establish this criterion is: every message is
timestamped with the sender’s clock; upon receiving a
message, if the receiver’s clock value does not exceed
the timestamp of the message, then the receiver’s clock
is set to a value greater than the timestamp.

Our message-passing layer is designed to provide lo-
cal clocks that satisfy the global snapshot criterion.
Our local clocks can be used for checkpointing and con-
flict resolution just as though they were global clocks.
Dapplet designers can separate the generic concerns of
clock synchronization from other concerns specific to
their application.

4.3. Synchronization Constructs

Java provides constructs for synchronizing threads
within a dapplet using something like a monitor [8]. We
have implemented and verified other kinds of synchro-
nization constructs — barriers, single-assignment vari-
ables, channels, and semaphores — for threads within
a dapplet [14]. We are extending these designs to allow
synchronizations between threads in different dapplets
in different address spaces.

4.4, Other Services

Previous subsections have described some session
services we would like to provide for dapplets: tokens,
logical clocks, and synchronization mechanisms. Other
servlets we might want to consider include incorpora-
tion of directory services [6] (e.g., for finding mobile
dapplets), distributed data structures (e.g., for diffus-
ing computations), and stacked layering of groups of
dapplets (e.g., for creating a resource-allocation layer).

5. Alternate Implementation Platforms

Although our vision for support of distributed sys-
tems is presented here in the context of Java, the
ideas proposed are consistent with other platforms,
such as CORBA-compliant Object Request Brokers
[11]. These platforms are well suited for client-server
applications, but designing and building peer-to-peer
distributed object computations is relatively difficult.

Nevertheless, we anticipate a proliferation of such sys-
tems for the reasons outlined in Section 1. The struc-
turing approach provided by dapplets and sessions is a
useful design methodology for these distributed object
computations.

In the distributed object context, dapplets are ob-
jects interacting via remote procedure calls, and the
interfaces through which they receive messages are the
public interfaces they export. Sessions are conglom-
erations of interacting objects. Servlets can have di-
rect support as object implementations (e.g., the to-
ken manager) and as specifications imbedded in the
object interface definition. Such object interface defi-
nitions are part of the CORBA standard (which defines
an implementation language-independent interface def-
inition language). This interface definition provides a
convenient framework in which to specify servlet be-
havior.

Many other research groups are presently working
on distributed systems in which distributed (and pos-
sibly mobile) objects interact over the Internet [12];
our focus, by contrast, is on specifying, building, and
reasoning the compositional units.

6. Summary

This paper identifies a class of distributed systems
that is different from the traditional variety, and gives
an analysis of the requirements of such systems. We
propose a design to meet the requirements; the design
supports distributed sessions of processes (dapplets)
that can be composed by linking input and output
ports (inboxes and outboxes). The design was selected
because it supports modularity — each dapplet has a
simple interface defined by its ports — and because
its implementation in Java using Java socket classes is
straightforward. The design facilitates the creation and
maintenance of sessions — temporary networks of dap-
plets that carry out specific tasks. Our work focuses
on designing, implementing, and verifying services that
can be composed within dapplets; we described some
services that simplify the design of dapplets.

7. Acknowledgements

This research was supported in part by the Na-
tional Science Foundation under Cooperative Agree-
ment number CCR-912008, and by CISE Direc-
torate grant CCR-9527130 for the integration of
symbolic computing with frameworks of classes and
problem-solving environments. This work constitutes
part of the Caltech Infospheres Project; more in-

formation is available in [5] and in the Web page
http://www.cs.caltech.edu/~adam/CALTECH/infospheres.html

References

[1] A. Birrell. An introduction to programming with
threads. Technical Report Report 35, Digital Systems
Research Center, 1989.

[2] K. Chandy and C. Kesselman. CC++: A declar-
ative concurrent object-oriented programming nota-
tion. In Research Directions in Concurrent Object-
Oriented Programmaing. MIT Press, 1993.

[3] K. Chandy and L. Lamport. Distributed snapshots:
Determining the global states of distributed systems.
ACM Transactions on Computing Systems, 3(1):63-
75, Feb 1985.

[4] K. Chandy and J. Misra. Parallel Program Design: A
Foundation. Addison-Wesley, Reading, MA, 1988.

[6] K. Chandy and A. Rifkin. Systematic composition of
objects in distributed internet applications: Processes
and sessions. In Submission to 30th Hawaii Interna-
tional Conference on System Sciences, Jan. 1997. Also
available as Caltech Computer Science Tech Report
96-15.

[6] K. Chandy and E. Schooler. Designing directories in
distributed systems: A systematic framework. In Pro-
ceedings of the Fifth Workshop on High Performance
Distributed Computing, Syracuse, NY, Aug. 1996.

[7] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley Developers Press, Sun-
soft Java Series, 1996.

[8] J. Gosling, F. Yellin, and the Java Team. The Java
Application Programming Interface. Addison-Wesley
Developers Press, Sunsoft Java Series, 1996.

[9] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558-565, Jul 1978.

[10] N.Lynch. Distributed Algorithms. Morgan-Kaufmann,
San Francisco, CA, 1996.

[11] Object Management Group. The Common Ob-
ject Request Broker: Architecture and Specification
(CORBA). OMG, 1995. Revision 2.0.

[12] Object Management Group and World Wide Web
Consortium. Proceedings of the Workshop on Dis-
tributed Objects and Mobile Code. OMG/W3C,
Boston, MA, Jun 1996.

[13] J. Postel. User Datagram Protocol. RFC 768, Aug
1980.

[14] P. Sivilotti and K. Chandy. Toward high confidence
distributed programming with java: Reliable thread
libraries. In International Conference on Software En-
gineering, Las Vegas, NV, Jul 1996.

[15] W. Stevens. Uniz Network Programming. Prentice-
Hall, Englewood Cliffs, NJ, 1990.

[16] A. Tanenbaum. Distributed Operating Systems.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

