Increasing Client-side
Confidence in Remote
Component Implementations

Ramesh Jagannathan
Paul A.G. Sivilotti

Dept. of Computer & Info. Science
The Ohio State University

Testing Components

m Component interface
m Behavioral specification
m Abstract state behaviors &

m Both safetyand Q abstract state
progress properties

m From interface,
automatically generate
testing harness
m Unit-testing
= Monitors/records O methods &

component behavior concrete state

m Reports violations (and
trace information)

interface

implementation

Client-side Confidence in Remote Components 3

n Testing Remote Components
(Challenges)

m No access to implementation
m Executable resides on remote machine
m Truly black box

m Heterogeneity of clients
m Different clients may have different:

= Confidence requirements / priorities
u Performance requirements / priorities

m Multiple threads of control
m Concurrent invocations of shared components
m Precondition paradox

Client-side Confidence in Remote Components 5

_ Distributed Autonomous
Peer-to-peer Systems

environment

system

“computational tapestry”

Client-side Confidence in Remote Components 2

n Contrast Developer and
Client-side Testing

= Developer-side:
m Compare spec with actual

behavior Q &

interface

m Includes state transitions abstract state
m Client-side:

m Compare spec with

observed behavior
m Only visible behavior

matters) methods &

= messages sent & received concrete state

m There must exist some

Jjustification for behavior implementation

Client-side Confidence in Remote Components 4

Example: Auctioneer

interface Auctioneer {
void bid (int amount); // submit bid

void inc (int amount); // increase current
// high bid

int getBid (); // return value of current
// high bid

Client-side Confidence in Remote Components 6

Example: Auctioneer

interface Auctioneer {
state int price = 0

void bid (int amount);
mod: price
post: price = max(price,amount)

void inc (int amount);
mod: price
pre: amount >0
post: 'price < price <= 'price+amount

int getBid ()
post: getBid() = price

o 3
UNIVERSITY Client-side Confidence in Remote Components 7

- A Faulty Component:

Unilateral Detection
m Some faults can be detected by a
single client

—GetBid)
\ZK*
etBid|
4

>

T
wwwwww Client-side Confidence in Remote Components 9

- A Faulty Component:

Limitation on Detection
m Some faults can not be detected even
by a collection of clients

‘%-%‘

OHIO
STATE

Dtsy Client-side Confidence in Remote Components

A Simple Example

ONIVERSITY Client-side Confidence in Remote Components 8

- A Faulty Component:

Collective Detection
m Some faults can only be detected by
a collection of clients

—25 M.
«—getBi

T
wwwwww Client-side Confidence in Remote Components 10

Solution: Checking Wrapper

m Intercept messages to/from
component

%

Client-side Confidence in Remote Components

Design Issue I: Opacity

m Component is a black box

m Eg, value of current high bid is not known
outside of Auctioneer implementation

m Observation:

m Specification is in ferms of abstract state
m Design decision:

m Component must provide abstract state

m Intercept all messages and compare values with
current (and new) abstract state

m Provided state is a “cover story” that justifies
the observed messages

Client-side Confidence in Remote Components 13

Opacity Example IT

bid(25) getBid()

getBid()

Client-side Confidence in Remote Components 15

Privacy Example I

inc(30) bid(20) bid(10) getBid()

20

Client-side Confidence in Remote Components 17

Opacity Example T

bid(25) getBid() inc(3)

25

Client-side Confidence in Remote Components 14

OHIO
SIALE

Design Issue II: Privacy

m Component does not trust the checking
framework

m Wrapper might leak private information
(abstract state) to the clients

m Eg, game of mastermind
m Observation:
= Many different abstract states may justify the
same visible behavior
m Design decision:

m Component may provide a sef of possible
abstract states

m Cardinality of set is decided by component

Client-side Confidence in Remote Components 16
T W §
ONIVERSITY Client-side Confidence in Remote Components 18

_ Design Issue III:
Performance

m Checking abstract states incurs overhead
m Effect is amplified by multiple cover stories
m Observation:
= Not all clients may want this level of checking
m Design decision:
m Distinguish between different confidence levels
m Selectively synchronize for high-confidence

Client-side Confidence in Remote Components 19

Next Property: P next Q
m Example: (A = 4) next (A >=4)

Value (4 |6 |3 |4 |2
of A
P v X X N
Q [V [v [x [INNX

m Observation:
m(Pnext Q) = [P= Q]

Client-side Confidence in Remote Components 21

Enriched Interface Description

interface Auctioneer {
#pragma state inf price;
#pragma initially.(price == 0);

#pragma fnext.(i = n_bid, j = price) in \
(n_bid == i && price == j) next \
(n_bid == i+1 ==> price == max(j, amount));

void bid (int amount); // place a bid
void inc (int amount); // increases the bid value
int getBid();

Client-side Confidence in Remote Components 23

_ Design Issue IV:
Specifying Behavior

m Components exhibit autonomous reactive
behavior
= Non-terminating
m Can initiate behavior (active)
m Observation
m Ubiquity of interface description languages
m Design decision

m Behavioral specifications given in temporal logic
(hext, transient, stable,...)

= IDL augmented with specification constructs

Client-side Confidence in Remote Components 20

Example Specification

m Using pre- and post-conditions
void bid (int amount)
mod: price
post: price = max('price, amount)
m Using next (quantified)
(Gi,j = (n_bid = i Oprice = j) next
(n_bid = i+1 = price = max(j, amount)))
m Using functional next
(i := n_bid, j := price) in
(n_bid =i Oprice = j) next
(n_bid = i+1 = price = max(j, amount))

Client-side Confidence in Remote Components 22

Architecture of Framework

SERIALIZER

Server

Client-side Confidence in Remote Components 24

Carrenr e i
Absrract St Szt Absrrocr Srons Sare

CHECKING FRAMEWORK.

Pruning Abstract States

m Current set of possible states
mS={s,S5,..5}

m Set of possible new states reported
by component
nT={f 1., T}

m Collection of next properties
aN={n;,n,, .., np}

Client-side Confidence in Remote Components 25

Removing a State

m Rule:

m A new state, t, is valid if it has support
from a predecessor in the old set, S

,,,,,,, _
S;|S,|S3|Ss 3 Sp

e -

(5:s50S:Pg=Qu)

Client-side Confidence in Remote Components 26

Removing a State IT

= Rule:

m At least one predecessor must conform
to all next properties for t; fo be valid

: T
| H |
‘51 S, 53‘54‘ s ‘51 S, 53‘543 |-

‘ \ Puneyxdu ‘ ‘ P/next Q, ‘

n

[Wfelefe] [-[6] [u]efe]u] |-[u]
(O5:sO0S:(Ok:1<ks<p: Pk.ssz.tj))
Client-side Confidence in Remote Components 27

Pruner Algorithm

for each new state t;
for each old state s;
assume s; support ;
for each next property of the form (P, next Q)
if = (Ps; = Qi)
then s; does not support t;
endfor
endfor
if no s; was found to support t;
remove t; from the new state set
endfor
if the new state set is empty, report violation

Client-side Confidence in Remote Components 28

Optimization for Pruning

® Two ways to satisfy P.s; = Q.1
m-P.s; : so s; provides support for all t's
mQt;: so 1 is supported by all s/s

0s |5, S, |83 os|s; |s,|ss
ns ns
L -P.s; L Q.1 [V |V
t, v t,
t3 v t3
ty v ts,
Client-side Confidence in Remote Components 29

Optimization for Pruning

m If P.s; = Q.1; is not satisfied, no need
to check remaining next properties

P; next Q; P, next Q,
0s |5 S, |83 0s |5 S, |83

ns ns

t P.s; O t x

Q.1

T2 T2

T3 T3

t, t,

Client-side Confidence in Remote Components 30

Confidence Levels

m High confidence
m Pruning, including all prior interactions,
completed prior to reply
u Potentially high overhead (delay) for client
m Low confidence
m Cover story appended to queue
m Reply forwarded to client prior to any pruning
m Very little overhead (delay) for client
m Medium confidence

= Bound on number of replies optimistically
forwarded

Client-side Confidence in Remote Components 31

Confidence Level Data Flow

High

Client-side Confidence in Remote Components 32

Confidence Guarantees

m High confidence

m All validated replies represent correct
behavior (up to that point)

m Low confidence

m All violations are reported eventually,
provided the client continues to interact

m Medium confidence

m All validated replies, save the last n,
represent correct behavior to that point

Client-side Confidence in Remote Components 33

Related Work

m Confidence in proprietary implementations
m Proof-carrying code, acceptance checking

m Inferring remote state
m Control theory, model checking

m Dynamic testing
m Eiffel, iContract, AssertMate, Biscotti, cidl

m Compohent wrappers to separate checking
m RESOLVE

m Security and trust

Client-side Confidence in Remote Components 34

Conclusions

m Prototype for CORBA components
m CIDL for behavioral specification
m Component implementation language neutral
m See: http://www.cis.ohio-state.edu/~paolo
m Utility of CORBA interceptors
m Automate tracking incoming/outgoing messages
m Unfortunately, ORB dependent (ORBacus)
m Ongoing evaluation
m Banking, auction, telephone activation system
m Web services (WSDL)
m Natural extensibility of notation

Client-side Confidence in Remote Components 35

Acknowledgements

m Distributed Components research group at
Ohio State
m Prakash Krishnamurthy, Scott Pike, Nigamanth
Sridhar, Murat Demirbas, Karuna Annavajjala,
Bob Nolan, Charlie Giles
m Funding sources:
u National Science Foundation (ITR)
m Lucent Technologies
m Ohio Board of Regents

Client-side Confidence in Remote Components 36

Increasing Client-Side
Confidence in Remote
Component Implementations

Ramesh Jagannathan
Paul A.G. Sivilotti

Dept. of Computer & Info. Science
The Ohio State University

http://www cis.ohio-state.edu/~paolo

Pruner Algorithm - Example

m (top = k) next (fop=k Vtop=k+1)

current abstract 4|5

state set

new state set

Client-side Confidence in Remote Components

38

