Increasing Client-side Confidence in Remote Component Implementations

Ramesh Jagannathan Paul A.G. Sivilotti

Dept. of Computer & Info. Science
The Ohio State University


```
Example: Auctioneer

interface Auctioneer {
    state int price = 0

    void bid (int amount);
    mod: price = max('price,amount)

    void inc (int amount);
    mod: price = max('price,amount)

    void inc (int amount);
    mod: price | pre: amount > 0
    post: 'price < price <= 'price+amount |

    int getBid ();
    post: getBid() = price

};

Client-side Confidence in Remote Components 7
```


Design Issue III: Performance

- Checking abstract states incurs overhead
 - Effect is amplified by multiple cover stories
- Observation:
 - Not all clients may want this level of checking
- Design decision:
 - Distinguish between different confidence levels
 - Selectively synchronize for high-confidence

Client-side Confidence in Remote Components

Design Issue IV:

- **Specifying Behavior** Components exhibit autonomous reactive behavior
 - Non-terminating
 - Can initiate behavior (active)
- Observation
- Ubiquity of interface description languages
- Design decision
 - Behavioral specifications given in temporal logic (next, transient, stable,...)
 - IDL augmented with specification constructs

Client-side Confidence in Remote Components

Next Property: P next Q

■ Example: (A = 4) next (A >= 4)

Value of A	4	6	3	4	2
Р	1	Х	X	V	X
Q	V	1	X	1	X

- Observation:
 - \blacksquare (P next Q) \Rightarrow [P \Rightarrow Q]

Example Specification

- Using pre- and post-conditions void bid (int amount) mod: price
 - post: price = max(price, amount)
- Using next (quantified)

 $(\forall i,j :: (n_bid = i \land price = j) next$ $(n_bid = i+1 \Rightarrow price = max(j, amount)))$

■ Using functional next

(i := n_bid, j := price) in (n_bid = i \ price = j) next $(n_bid = i+1 \Rightarrow price = max(j, amount))$

Client-side Confidence in Remote Components

Client-side Confidence in Remote Components

Confidence Levels

- High confidence
 - Pruning, including all prior interactions, completed prior to reply
 - Potentially high overhead (delay) for client
- Low confidence
 - Cover story appended to queue
 - Reply forwarded to client prior to any pruning
 - Very little overhead (delay) for client
- Medium confidence
 - Bound on number of replies optimistically forwarded

Client-side Confidence in Remote Components

31

Confidence Guarantees

- High confidence
 - All validated replies represent correct behavior (up to that point)
- Low confidence
 - All violations are reported *eventually*, provided the client continues to interact
- Medium confidence
 - All validated replies, save the last n, represent correct behavior to that point

Client-side Confidence in Remote Components

Related Work

- Confidence in proprietary implementations
 - Proof-carrying code, acceptance checking
- Inferring remote state
 - Control theory, model checking
- Dynamic testing
 - Eiffel, iContract, AssertMate, Biscotti, cidl
- lacktriangleright Component wrappers to separate checking
 - RESOLVE
- Security and trust

Client-side Confidence in Remote Components

Conclusions

- Prototype for CORBA components
 - CIDL for behavioral specification
 - lacktriangle Component implementation language neutral
 - See: http://www.cis.ohio-state.edu/~paolo
- Utility of CORBA interceptors
 - Automate tracking incoming/outgoing messages
 - Unfortunately, ORB dependent (ORBacus)
- Ongoing evaluation
 - Banking, auction, telephone activation system
- Web services (WSDL)
 - Natural extensibility of notation

Client-side Confidence in Remote Components

Acknowledgements

- Distributed Components research group at Ohio State
 - Prakash Krishnamurthy, Scott Pike, Nigamanth Sridhar, Murat Demirbas, Karuna Annavajjala, Bob Nolan, Charlie Giles
- Funding sources:
 - National Science Foundation (ITR)
 - Lucent Technologies
 - Ohio Board of Regents

Client-side Confidence in Remote Components

3

Increasing Client-Side Confidence in Remote Component Implementations

Ramesh Jagannathan Paul A.G. Sivilotti

Dept. of Computer & Info. Science
The Ohio State University

http://www.cis.ohio-state.edu/~paolo

