Increasing Client-Side Confidence in Remote Component
Implementations

Ramesh Jagannathan
Dept. of Computer and Information Science
The Ohio State University
Columbus, Ohio, USA

rjaganna@cis.ohio-state.edu

ABSTRACT

When a client makes use of a remote component, it does not
have direct access to the remote component’s implementa-
tion or state information. By observing the component’s
interactions with its environment, however, the client can
determine whether the component’s behavior conforms to
its promised specification.

We present a distributed infrastructure with which a client
can make these observations and thereby increase its confi-
dence in the correctness of the remote component. This in-
frastructure supports temporal specifications of distributed
components with autonomous threads of control. It also
supports multiple levels of confidence, with commensurate
performance costs. As a proof-of-concept for this design,
we have implemented a prototype in Java for distributed
systems built using CORBA.

Keywords
Distributed components, observability, trust, CORBA, test
oracles

1. INTRODUCTION

There are two complementary aspects to the construction of
high-confidence component-based software. The first aspect
(and primary focus of much research) is the implementation
and publication of components that conform to their specifi-
cation. Many techniques have been developed for increasing
the developer’s confidence in the correctness of their own
implementation. These techniques include formal verifica-
tion (e.g., model checking and theorem proving), robust im-
plementation methodologies (e.g., programming languages,
programming paradigms, and design patterns), validation
(e.g., functional testing, structural testing, and fault injec-
tion), disciplined development strategies (e.g., requirements
analysis, design reviews, and code walk-throughs), and—all
too commonly—even simple hubris.

Paolo A.G. Sivilotti
Dept. of Computer and Information Science
The Ohio State University
Columbus, Ohio, USA

paolo@cis.ohio-state.edu

The second aspect to constructing high-confidence systems
is the dual issue: How to increase the client’s confidence in
the correctness of a component’s implementation. Here, we
do not distinguish between clients that are people, as in a
business model, and clients that are programs, as in a soft-
ware component model. The client cannot infer whether any
disciplined development strategies were used by the com-
ponent provider. Furthermore, if the source code is not
available (e.g., the implementation is proprietary) the client
cannot undertake independent verification or analysis of the
untrusted component. This leaves validation, in general, as
the only practical means for a client to gain confidence in
the correctness of a given component.

Validation, in this context, is commonly known as accep-
tance testing: The end user systematically conducts a series
of tests to uncover errors in the implementation [17, ch. 17].
Acceptance testing in this form alone, however, may not
provide a sufficient solution. Even after the most exhaustive
acceptance testing, some uncertainty remains regarding the
correctness of the component implementation. For systems
that require the highest levels of confidence, this uncertainty
may not be acceptable. Another potential concern with ac-
ceptance testing is that it involves considerable overhead be-
fore a decision is made to accept or reject a new component.
In a highly dynamic system, where new component refine-
ments are frequently being introduced, the end-user may not
wish to incur this decision overhead before updating their
system, especially for an infrequently used component. In
both these cases, it is preferable to confirm the correctness
of the interactions that actually occur between client and
component during run time. The component is monitored
at run time to dynamically detect when the implementation
(already incorporated into the end-user’s system) diverges
from its promised behavior.

Run-time monitoring works well in a sequential context, but
there are subtle differences in its application to distributed
systems. Components of sequential systems enjoy an impor-
tant property: They lack an independent thread of execu-
tion and are therefore dormant between invocations. In a
distributed system, however, components often exhibit re-
active behavior, responding to environmental stimuli over
time. The specification of such components, and the re-
sulting monitoring, is therefore quite different from that of
sequential components. Furthermore, a distributed system
can be heterogeneous in the trust relationships that exist (or

Bldderl <B|dder2> <B|dderS

Bi dderS

Auctioneer Bidder4

< Bidder7> < Bidder6> < BidderS>

Figure 1: Architecture of a Distributed Auction

are expected) between components. For example, one set of
clients may have a more critical dependency on a compo-
nent than another set of clients. The first set of clients may
be willing to incur more overhead for increased confidence
than the latter. Also, with distributed systems, the exe-
cutable component code is typically remote and therefore
inaccessible.

We propose a distributed infrastructure that enforces a sin-
gle point of entry for component implementations, while al-
lowing different clients to operate at different levels of con-
fidence (incurring proportional overhead costs). We have
developed a prototype in Java for use in CORBA-based dis-
tributed systems.

Section 2 introduces a motivating example that will also be
used in an illustrative manner in later sections. Section 3 de-
scribes the specification notation used to define the behavior
against which conformance of component implementation is
checked. Section 4 discusses the most significant design fea-
tures of the distributed infrastructure for monitoring remote
component behavior. Section 5 outlines the implementation
(in Java) of the infrastructure for CORBA systems. Sec-
tion 6 explores the limitations of our approach. Finally,
Sections 7 and 8 contrast this work with some related work
and summarize our findings.

2. MOTIVATING EXAMPLE: AUCTION

Consider a distributed auction system, consisting of several
bidding clients and a single auctioneer component. The bid-
ders interact only with the auctioneer, as in Figure 1.

The syntactic interface for the auctioneer component is given
in Figure 2. This component keeps track of the current
high bid. There are two ways for clients to submit a bid:
(i) the placeBid() method with which a specific amount
is submitted, and (ii) the incBid() method which requests
an increase to the current high bid value. If the bid sub-
mitted with placeBid() exceeds the current high bid, this
value is updated. Otherwise, the method has no effect. The

interface Auctioneer {
void placeBid (int bid);
void incBid (int maxinc);
int getBid ();
bool getDone ();

Figure 2: Syntactic Interface for Auctioneer

incBid() method, on the other hand, is guaranteed to in-
crease the current high bid value. The amount of increase
is nondeterministically chosen (but bounded above by the
method argument).

The auction completes nondeterministically. The auction-
eer is free to close the bidding whenever it wishes. Bid-
ders determine the current highest bid through the getBid ()

method, and whether or not the auction has completed through

the getDone () method.

A bidder participating in this auction may wish to have
certain guarantees on the correctness of the auctioneer, in-
cluding: (i) the auctioneer should not ignore the submission
of a winning bid, (ii) the current high bid should never de-
crease, and (iii) a completed auction should never resume.
For example, if the auctioneer reports a certain value as the
current high bid to Bidderl, it should not then report a
different value to Bidder2 without having received an inter-
vening bid.

The clients could check these kinds of violations by com-
municating amongst themselves, but in a loosely-coupled
distributed system a bidder might not be aware of the par-
ticipation of the other bidders in the auction. Even more
problematic, the bidders would have to agree on the actual
sequence of events seen by the auctioneer. Without real-
time guarantees on message propagation, it would not be
possible—in general—to infer the order in which messages
arrived at, or were sent from, the auctioneer.

Our aim is to provide an infrastructure that limits the uncer-
tainty described above and that provides certain guarantees
to clients about the correctness of the auctioneer (and hence
fairness of the auction).

Note that the interface for the auctioneer and description
of the auction given here is not complete: There is no way
for a client to determine the identity of the winning bidder.
This simple example, however, provides sufficient complex-
ity to illustrate the main issues in our remote-component
validation infrastructure.

3. SPECIFICATION NOTATION

Our specification notation, based on temporal logic [8], was
introduced in earlier work [22]. This notation defines com-
ponent behavior with a collection of certificates, temporal
properties that are local to a single component. The fun-
damental certificates for specifying safety and progress are
initially , next , and transient [12, 11].

3.1 Fundamental Operators

The state of a component is defined by the values of its
variables. To separate the specification from the implemen-
tation, abstract variables are used. Component behavior is
then modeled as a (potentially infinite) sequence of abstract
states, also known as a trace. For example, consider a com-
ponent whose abstract state consists of a single variable, a
natural number z. One trace for this component might be:

<3,3,2,1,4,4,4,6,3 >

A trace satisfies the property initially.P exactly when the
first state in the trace satisfies predicate P . For example,
the trace above satisfies the property

initially.(z = 3)

A trace satisfies the property P next) exactly when each
state in the trace that satisfies predicate P is immediately
followed by a state that satisfies predicate) . For example,
the trace above satisfies the property

r=4nextzt=4Vz=6

(Temporal operators, such as mnext, have lower binding
power than A and V .) For technical reasons, stutter-
ing (the finite repetition of a state) is always permitted.
Therefore, if P next @ is satisfied by all the traces of
a component, it must be the case that P = Q. From
these basic safety operators, others can be defined such as
invariant and stable.

Quantifications frequently occur in specifications that use
next . For example, the following property says that x
never decreases:

(Vk:: z=knext z>k)

Progress properties are specified with the transient oper-
ator. Since progress properties cannot be violated in any
finite execution, we focus here on the detection of violation
of safety properties.

3.2 Pre- and Postconditions

At first glance, next may appear quite different from com-
ponent specifications more common in sequential systems,
for example pre- and postconditions. Specifications writ-
ten using next, however, are relatively complete, so any
specification written with pre- and postconditions can be
expressed with next .

In fact, any given pair of pre- and postconditions can be eas-
ily translated into a next -based specification. The essence
of this translation is the introduction of history variables
that encode the number of message events (i.e., method in-
vocations) that have occurred.

For example, consider a component whose abstract state is
a single natural number, x, as above. This component has
a single method, div, whose effect is to divide the value of
x by two if x is even. The specification for this method
might be written:

method div (void)

pre: even.t
mod: z
post: z = 'z /2

(A preprimed variable in the postcondition denotes the value
of the variable before the method executed).

The translation into next introduces the history variable
n%" | the number of times that an invocation of div has
been received. The corresponding property, expressed with

next , is
(Vi k = =i T =k
next (n* =j+1Aevenk = x=k/2)
A =j=>e=k))

The subtleties involved in such a translation are not our
concern here. We simply note the following observations:

e Pre- and postcondition-based specifications can be eas-
ily mapped into next properties.

e This mapping results in a quantified next property
of a particular form, known as functional [7]. This
form is amenable to efficient testing, as discussed in
Section 5.3.

e FEach next property is a property of the entire com-
ponent, rather than any single method.

e next properties are more general because they can be
used to express autonomous component behavior (i.e.,
behavior that does not directly result from a method
invocation).

We will present behavioral descriptions with either pre- and
postconditions, or next , as convenient for expository rea-
sons.

3.3 Auctioneer Specification

Consider the auction example introduced in Section 2. The
abstract state of the Auctioneer component consists of the
current high bid and whether or not the auction is done.
This abstract state is captured by two variables, a natural
number p (equal to the current asking price) and a boolean
d (true exactly when the auction is done).

The initial state for this component is given by:

initially.(p = 0 A ~d)

Two properties related to the completion of the auction are
that (i) a completed auction cannot resume, and (ii) the
auction eventually completes. These properties are captured
below.

d next d

transient.(—~d)

The remaining properties can be given most concisely using
pre- and postconditions, which is shown in Figure 3. From

method placeBid (int bid)
mod: p
post: =d = p= max ('p,bid)

method incBid (int maxinc)
req: maxinc > 0
mod: p
post: =d = 'p < p <'p+ mazinc

method getBid () : int
post: getBid =p

method getDone () : bool
post: getDone =d

Figure 3: Specification of Methods in Auctioneer

this specification, we can derive some component properties
that can be easily expressed with temporal operators, for
example:

(Vk :: p=knextp>k)

4. DESIGN ISSUES

In this section we outline the principal design decisions of
the validation infrastructure. We focus on issues that are
independent of the particular implementation language and
middleware adopted for our prototype.

4.1 Black-Box View of a Component

The principle of information hiding dictates that a compo-
nent’s interface be separate from its implementation. The
former is available to clients while, in a distributed system,
the particulars of the latter (e.g., implementation language,
size, executable code, operating system, platform) are not.
By observing the component’s interactions with its environ-
ment, however, one can identify behavior that does not con-
form to the promised specification.

Our design is based on associating with each component
a checking proxy through which all interactions with the
environment occur. The basic structure of this proxy is il-
lustrated in Figure 4. All incoming messages are serialized
to ensure that there is a single sequence of noninterleaved
events at the component. All incoming and outgoing mes-
sages must pass through a gate. Whenever a state transition
occurs in the component (e.g., a method completes or a mes-
sage is sent), the gate receives both the outgoing message
and the new abstract state of the component.

The sequence of abstract states received by the gate forms
a “cover story”, told by the component implementation to
justify the behavior observed by the gate. Note that this
cover story is told in terms of abstract (specification) states
rather than concrete values. Whenever a new abstract state
is received from the component, it is checked against the
previous state in combination with all of the next proper-
ties in the specification. For a property P next @, if the
old state satisfies P but the new state does not satisfy @,
the component is judged to be nonconformant.

(i) (cienz) (crens)

4 N

A 4

SERIALIZ@
ﬁ v N
[PRUNERJ [GATE j}:ﬂ

A

—

Current Set of Queue of Sets of
Abstract Sates Abstract Sates

- J

Figure 4: Design Architecture of Checking Proxy

Notice that there is no assumption made on the accuracy
of the cover story. Since the component implementation
cannot be trusted to be correct, it cannot be trusted to
provide the correct abstract state either. If the component
provides an invented cover story that is consistent with the
observed behavior (messages that have crossed the gate), a
client should be satisfied, provided the invented cover story
also conforms to the specification.

Consider an example of the violation suggested in Section 2.
Bidderl invokes the getBid () method and discovers the cur-
rent highest bid is 100. The Auctioneer, along with its re-
ply, also provides its abstract state. If the state differs from
p = 100, the gate detects the violation. Now Bidder2 in-
vokes getBid() and is told the current highest bid is 120.
If an abstract state of p = 100 is reported, the error is
flagged because this is not consistent with the observed re-
turn value. If an abstract state of p = 120 is reported, the
error is flagged because the specification does not allow the
Auctioneer to spontaneously change p.

4.2 Notification of Clients

There are two ways in which clients can interact with a
remote component: synchronous method calls and asyn-
chronous message passing. In either case, we treat the mes-
sages sent by the component the same (whether they be
method return values or asynchronous messages initiated
by the component). All outgoing messages from the check-
ing proxy are augmented with a boolean field. If the proxy
detects—or has previously detected—a violation, this dan-
ger condition is indicated in the boolean field.

Notice that an implementation violation might not be de-
tected immediately. A malicious component may be able to
construct an invented cover story (bearing in mind that it
cannot rewrite history) that explains its behavior. It is only

incBid(10) incBid(5) incBid(5)

-\

(10| 101 02| e
110 108

115

Figure 5: Pruning Sets of Abstract State

once the cover story cannot be extended to the next state
that the checking proxy is able to conclude that a violation
has occurred. It is at this point that outgoing messages are
marked and clients receive notification.

The integration of asynchronous messages in our framework
raises another interesting issue. Depending on the size and
complexity of the specification, the conformance checking by
the gate may take a significant amount of time. There is no
reason why the next incoming message cannot be forwarded
to the component while this checking is being carried out.
This optimization requires that the outgoing messages be
buffered along with the corresponding abstract state issued
by the component as its cover story. The gate is then re-
sponsible for serializing ingoing messages to the component
and outgoing messages (and abstract states) to the buffer.
At the other end of the buffer, the cover story is checked for
conformance.

4.3 Multiple Possible Abstract States

Just as clients may not trust component implementations,
S0 too the component may not trust the clients. A compo-
nent may therefore be reluctant to reveal its abstract state.
For example, consider a component that awards a prize to
the client that guesses a secret number. Such a component
may not wish to reveal its actual abstract state. Instead of
a single abstract state, therefore, the gate maintains a set of
possible current abstract states. In this way, the infrastruc-
ture supports abstraction relations (with finite images).

With each action, the component provides the new set of
possible abstract states. The requirement for each element
of this set is that there exists an element in the predeces-
sor set in the cover story such that this element could be
reached. The checking at the head of the queue is actually a
pruner, removing elements that do not have a possible pre-
decessor in the previous set of abstract states. A violation
is reported when the pruning results in an empty set.

Consider again the auction example. A sample cover story
is shown in Figure 5. Initially, the current high bid is 100.
After a call to incBid(10), the high bid is nondeterminis-
tically set and say the auctioneer reports it is either 101 or
110. After another call, incBid(5), the Auctioneer could
report that the current high bid is 102 or 115, but it is not
free to report a value of 108, even though this value is con-
sistent with observed interactions with the environment. A
state where p = 108 would therefore be pruned, preventing
the next call to incBid(5) from reporting an abstract state

of, say, p=112.

4.4 Reducing the Performance Bottleneck
The increase in client-side confidence comes at the cost of
performance. Each outgoing message and accompanying set
of abstract states must be pruned to detect a violation. In
the case of a synchronous method invocation, the method
will not return a value to the client until the return message
has been analyzed in this way. Indeed, the pruning of all
the previously buffered return values (and sets of abstracts
states) must first be completed. This can cause a significant
increase in the round-trip time required for high-confidence
method invocation and result return.

For clients that are more robust to component errors and
therefore do not require this high level of confidence, this
performance bottleneck can be eliminated. For these clients,
which we deem “low-confidence”, a response can be sent
immediately. When the gate receives an outgoing message
for a low-confidence client, it forwards the message imme-
diately to that client. The checking proxy still obtains a
new set of abstract states from the component and appends
this set to the buffer for pruning. The outgoing message for
a low-confidence client is still augmented with violation in-
formation, so the client is notified of a violation in the case
where the checking proxy has already detected an error from
previous component interactions and cover stories.

A high-confidence client that receives a message marked
“ok” from the component (e.g., a method return) is guar-
anteed that the component’s cover story was consistent up
until that point. A low-confidence client has only the weaker
guarantee that if a violation is detected, it will eventually
be notified if it continues to receive messages. Both kinds
of clients are guaranteed that a message marked “error” in-
dicates that the component failed to construct a comnsistent
cover story, prior to that message being sent.

Between these two extremes, are “medium-confidence” clients.
For these clients, the amount of slack between violation de-
tection at the head of the queue and optimistic message for-
warding at the tail of the queue is bounded. For example,
the first message to a medium-confidence client would be
forwarded by the gate immediately, while the second would
be delayed if the first set of abstract states were still in
the queue, waiting to be pruned. In this way, a medium-
confidence client can bound how much history it must main-
tain in order to guarantee that it can rollback to a state in
which the component had still been conformant.

5. PROTOTYPE IMPLEMENTATION

In this section, we discuss the algorithmic and architec-
ture issues pertaining to our implementation of the design
sketched above. Our prototype is written in Java and uses
CORBA as the distributed middleware.

5.1 Pruning the Set of Abstract States

Recall the meaning of P next Q: If an abstract state
satisfies P it must be followed by a state that satisfies @ .
Put another way, to violate such a next property requires
a pair of states such that the old state satisfies P and the
new state does not satisfy Q. (Of course, if the old state

does not satisfy P, the property will be satisfied for any
new state.)

The algorithm is complicated slightly by the use of sets of
possible abstract states. An element of the new set of states
can be pruned if there does not exist an element in the old
set such that the pair satisfies the next property. Let S =
{s1, 82, 83, ..., Sn.} be the old set of abstract states and let
T = {t1,t2,t3,...,tm} be the new set of abstract states. An
element t; should be considered valid when there exists a
conformant predecessor in the old set.

(Fi:1<i<m: Ps; = Qt;)

With multiple next properties such as P1 next 1, P> next

Q2, ..., P, next @Qp, this predecessor must conform to all
of these properties.

(Fi:1<i<m: (Vk:1<k<p: Prsi = Qrt;j))
This check can be completed in O(np) time for each of the
m elements of the new set of abstract states. The entire
pruning operation therefore takes O(mnp) time.

5.2 Optimization of Pruning Algorithm

As discussed above, there are mnp triples of old state, new
state, and next property. This can be viewed as a three
dimensional array of cells to be checked for satisfaction. It
is not necessary, however, to evaluate each of these triples.
Consider a single triple: old state s;, new state t; , and
next property P, next (). Evaluating this triple entails
evaluating the prepredicate on the old state (P.s;) and the
postpredicate on the new state (Qx.t;). There are several
cases to consider.

If Py.s; is false, there is no need to evaluate the postpred-
icate on t;, since the next property will be automatically
satisfied regardless of the new state. Indeed, this satisfac-
tion applies to all elements of the new state set. All new
states can use s; as a predecessor, at least according to the
k" next property. The entire row corresponding to the **
old state and k*® next property can be marked as satisfied
without any further calculation.

Similarly, if Qg.t; is true, the next property is satisfied re-
gardless of the old state. Indeed, this satisfaction applies for
all elements of the old state set. Therefore, the entire column
corresponding to the ji* new state and k" next property
can be marked as satisfied without any further calculation.

Finally, if neither of these cases applies, then the prepredi-
cate is true for the old state s; but the postpredicate is false
for the new state ¢; . Therefore, s; can not be a predecessor
for the new state ¢; since it violates the k" next property.
This means that no more checks are required for this combi-
nation of old and new state: The entire tunnel through the
three dimensional array (corresponding to the it* old state
and j** new state) can be marked as not satisfied without
any further calculation.

Thus, while there appear to be a cubic number of checks
to perform, each check eliminates a linear number of triples
(an entire row, column, or tunnel). The pruning algorithm
therefore only requires a quadratic number of checks.

Response Houmas Responselnfo
Dispatcher :
_ Infarms
infarms
Checker
USES
ABSPuller Gate Thread
COntains
1
Uses
el AbstractState| Abstract
a5
Sequence State
O.n
StateSequence
Queque Pruner
wowrkis on

Figure 6: UML Class Diagram

5.3 Quantification of Specification Statements
As mentioned in Section 3, next properties for real systems
are frequently quantified. For example, the monotonicity of
the current high bid is captured by

(Vk = p=knextp>k)

Naive treatment of quantification uses the conjunction of
each next property in the range of quantification for prun-
ing. This is quite expensive since the running time is pro-
portional to the size of this collection; i.e., the size of the
range of quantification.

Fortunately, these quantifications are frequently of a special
form, termed functional [7]. A functional quantification is
one in which there is at most one value of the dummy vari-
able that satisfies the prepredicate in the next property.
In the example given above, the truth of the prepredicate
functionally determines the value of the dummy variable,
k.

If the quantification is functional, at most one of the prepred-
icates, say P;, can be true for a given state. Since the rest
of the terms in the universal quantification are vacuously
true, it suffices to check that one property, P; next Q;.
The pruning of the new set of states can therefore be done
without expanding all the terms in the quantification.

5.4 UML Class Diagram of the Design

The UML class diagram of the prototype implementation is
shown in Figure 6. Every component is associated with a
Gate object through which all messages to the component
pass. The Gate forwards these messages. When a response
is received back, the Gate calls the ABSPuller (Abstract-
StateSequencePuller) object to obtain the new set of ab-
stract states. ABSPuller, in turn, contacts the component
implementation to get the set of abstract states. It is the
responsibility of the component implementation to calculate
and return this set.

Once the Gate receives the new set of abstract states, it
adds this set to the tail of the StateSequenceQueue along
with the method invocation information (method name, pa-
rameters, and return value). The CheckerThread operates
on the head of the StateSequenceQueue. When this queue
is not empty, the first element is dequeued and compared
to the current set of abstract states. The Pruner removes
inconsistent states and updates the current set of abstract
states. The Gate and CheckerThread work concurrently,
synchronizing on the shared StateSequenceQueue object.

The ResponseDispatcher object handles return messages ac-
cording to the confidence level of the client. It either for-
wards the return message immediately or defers it until no-
tified by the CheckerThread. A Responselnfo object is in-
cluded with the message contents to indicate whether or not
a violation has been detected.

5.5 Multitasking Pruning and Message For-

warding
Our implementation supports different confidence levels as
discussed in Section 4.4. This support depends on decou-
pling the pruning of the cover story and the processing of
incoming and outgoing messages.

Java’s threading model allows us to do this multitasking.
The shared queue object has two synchronized methods:
enqueue () and dequeue(). The latter performs a wait if
the queue is empty while the later performs a notify as it
completes. The CheckingThread is then a simple loop of
dequeuing and pruning.

5.6 Serializing Invocations

We do not make strong assumptions about the communica-
tion model between the checking proxy and the component.
We only require that sent messages be delivered eventually.
In particular, we do not rely on messages being delivered
in the same order they were sent. Therefore, it is impor-
tant that the Gate forward at most one invocation at a time
to the component. Until that invocation completes and a
new set of abstract states is reported, no other invocation is
forwarded.

This serialization is accomplished by lock acquisition and
release. In order to be processed by the Gate, an incoming
message must first obtain a lock. The lock is implemented
as a Java class with synchronized methods acquire() and
release(). After the invocation has completed and the
Gate has enqueued the new set of states, the lock is released.

5.7 CORBA Implementation Issues

So far we have discussed the functionality of the checking
proxy in detecting a violation in the component implemen-
tation. The proxy intercepts messages to the component
and appends a new set of abstract state after the request is
completed. Here, we will see how messages are intercepted
and how the gate is created.

For this, we have exploited a new feature specified in CORBA
2.3 [14], interceptors. Interceptors are hooks provided at
various points in the object request broker method invo-
cation sequence. At these points, user code can be added

for debugging, logging, encryption, etc.. Interceptors per-
mit both message calls and return values to be monitored
and can be installed both the client and the target object.
CORBA specifies two different types of interceptors: request
level and message level. The former operate on structured
requests (and hence are higher in the protocol stack) while
the latter operate on unstructured message payloads.

Several CORBA implementations currently support inter-
ceptors, although each with vendor-specific idiosyncrasies.
For our prototype we have used Visigenic Visibroker [23] for
Java V4.1. The remaining discussion refers to the Visibroker
implementation of CORBA.

Visigenic Visibroker’s implementation of interceptors pro-
vides several different types of interceptors. We make use
of only two types - the ClientRequestInterceptor and the
ServerRequestInterceptor. Any method call on a component
is intercepted both by the ClientRequestInterceptor and the
ServerRequestInterceptor at various points in the method
invocation sequence. The Gate object is created by the
ServerRequestInterceptor when the latter intercepts the first
message to the component. The pre_invoke () hook method
in the ServerRequestInterceptor implements this functional-
ity. After the method invocation, the Pruner updates the set
of abstract states. The Pruner functionality is realized by
implementing the hook method post_invoke_premarshal().

The deferred return in the case of high-confidence client
requests is accomplished in the post_invoke_premarshal()
method of the ServerRequestInterceptor. In the post_invoke ()
method, all the high-confidence clients wait to be notified by
the Pruner. After pruning the abstract state sequence cor-
responding to a method invocation, the Pruner notifies the
appropriate waiting thread.

When the checking proxy detects a violation, it sends back
the violation information to the client. At the client side,
this message is intercepted by the ClientRequestInterceptor
by the hook method post_invoke(). The implementation of
this method can raise an exception for the application layer
to indicate the erroneous behavior.

6. LIMITATIONS

Our infrastructure has some limitations. Some are funda-
mental, due to the basic design decisions outlined earlier,
while others are a result of the CORBA and Java realiza-
tion of our design.

6.1 Design Limitations

The model of computation on which our specification no-
tation is based requires that component implementations
exhibit a trace of atomic operations. Our design helps to en-
force this by serializing invocations and preventing interleav-
ing of invocations. This restricts components to handling
invocations in a single-threaded manner. Multithreaded be-
havior is still possible, but the component is responsible for
creating and managing these threads and for continuing to
provide the appropriate cover story to the gate. The reason
for this restriction is to ensure that the order of events (and
cover story entries) in the queue corresponds to the order of
events at the component.

A second limitation is the overhead introduced to clients
that do not request any validation of the component be-
havior (zero-confidence clients). For the correctness of the
component behavior to be validated, all requests must pass
through the gate and all returns must be recorded in the
queue. Although this can be parallelized, a small cost must
always be incurred in at least synchronizing with this record-
ing thread.

Another limitation of this approach is that the violations
are only reported to clients by piggybacking the information
on outgoing messages. Consider Bidderl placing a bid of
100 and the Auctioneer does the right thing. Then Bidder2
places a bid of 80, and Auctioneer, erroneously, sets 80 as
the current winning bid. Bidder2 is notified of the violation,
but Bidderl is not. If Bidderl never invokes another method
on the Auctioneer, it is never notified of the violation.

Our checking strategy is based on confirming a cover story
provided by the component. We have already observed that
we do not rely on the component to provide the correct cover
story, since it is validated with respect to both the observed
behavior and the specification. This approach is safe in the
sense that any interaction confirmed by the checking proxy
is guaranteed to be consistent with the specification. The
converse, however, is not true. There is no guarantee that
every consisten interaction will be confirmed by the checking
proxy. If the component provides an erroneous cover story,
the proxy will detect a violation even though other cover
stories might have provided acceptable explanations for the
observed behavior. Our design, therefore, is conservative in
the sense that false positive reports of violation are possible
(but false negatives are not).

6.2 Implementation Limitations

Due to the pragmatics of fitting our general design to a
CORBA realization, our prototype is restricted from pro-
viding some advanced features.

Currently, our prototype does not support the dynamic cre-
ation of a checking proxy. A component’s proxy must be
instantiated at the same time as the component itself. The
reason for this restriction is that CORBA interceptors can
only be instantiated at the start of execution of the appli-
cation.

Another limitation is the physical location of the checking
proxy process. Although our design calls for a proxy that is
conceptually and physically separate from both client and
component, our CORBA prototype exploits interceptors at
the component side to provide the checking functionality.
One solution would be to use separate explicit proxy objects,
but interceptors provide a clean and convenient model for
prototyping.

7. RELATED WORK

Our work aims to increase client confidence in the correct-
ness of 3rd-party software. This goal has also motivated re-

search in verification-based approaches, such as proof-carrying

code [13]. Proof-carrying code is implementation code en-
riched with annotations that allow a client to independently
and efficiently verify the correctness of the supplied pro-
gram. In the context of distributed systems, this work has

found application in mobile agents. Our infrastructure, how-
ever, focuses on traditional, loosely-coupled, distributed sys-
tems, where the component implementation is remote and
inaccessible; in this context, independent verification cannot
be carried out.

Separation of interface and implementation is a fundamen-
tal tenet in software engineering. Many tools and languages
have been constructed to detect component interface vio-
lations at run-time. Examples include the Eiffel program-
ming language [10], iContract [6] and AssertMate [16] for
Java programs, and APP [19] for C programs. Examples for
distributed systems include Biscotti [2] for Java RMI pro-
grams, and cidl [4] for CORBA programs. Of these, only the
last explicitly supports the separation of the implementa-
tion (concrete) state from the specification (abstract) state.
Furthermore, all of these approaches rely on the component
to detect the interface violation. In our design, the check-
ing of interface violations is neither the responsibility of the
client, nor of the component itself. Rather, a separate en-
tity, the checking proxy, is responsible for this functionality.
In this way, it differs from the body of work based on a strict
“design-by-contract” [9] partitioning of responsibility.

One project that does separate interface violation check-
ing code from both the client’s code and the component’s
code is a framework based on “checking wrappers” [3]. Like
our work, this framework also distinguishes abstract and
concrete state, using the former for testing conformance of
component behavior. Checking wrappers, however, use a
functional mapping from concrete to abstract states. Ab-
straction functions such as this are known to be insufficient
[1, 5, 20]; in general, relations are required. Our infrastruc-
ture, by contrast, associates the current component imple-
mentation state with a set of abstract states, thus support-
ing (finite) abstraction relations. Also, our specification is
based on temporal behavior, which is more appropriate for
distributed components [21].

The problem of inferring remote state has also been explored
in the context of control theory [15, 18]. These studies have
focused on finite-state machine models for remote compo-
nents. Algorithms have been developed for inferring remote
state given a set of behavioral observations. These algo-
rithms are polynomial (space and time) in the number of
states. For real software components, however, these ap-
proaches are not practical since the number of possible states
is quite large.

To the best of our knowledge, our support for multiple, si-
multaneous confidence levels (with proportional overhead)
is a unique contribution.

8. CONCLUSIONS

We have presented our infrastructure for increasing client-
side confidence in the correctness of a remote component
implementation. We have discussed the realization of a pro-
totype, written in Java, for CORBA-based distributed sys-
tems. This work’s distinguishing features include:

Temporal Specifications. Distributed components often
exhibit temporal, reactive, and autonomous behavior.

Our infrastructure supports component specifications
written in temporal logic.

Synchronization Semantics. Clients can interact with a
remote component in either a synchronous (i.e., re-
mote method invocation) or asynchronous (i.e., mes-
sage passing) manner. Both are supported.

Abstraction Relations. A component implementation is
allowed to provide multiple candidates for the current
abstract state. This can be viewed either as support-
ing component privacy or as supporting abstraction
relations from concrete to abstract state.

Heterogeneous Confidence Levels. Validation at mul-
tiple, simultaneous confidence levels is supported. A
client using a lower confidence level incurs less delay
than one using a higher confidence level.

Information Hiding. All recording, pruning, and testing
is carried out in the domain of the abstract state. The
checking proxy implementation is therefore indepen-
dent from the particulars of the component implemen-
tation.

Allocation of Responsibility. Neither the clients nor the
component is given the responsibility for detecting in-
terface violations. The clients cannot independently
detect such a violation and the component itself can-
not be trusted to detect it. Instead, the responsibil-
ity is assigned to a trusted intermediary, the checking

proxy.

An implicit premise of this work is that it is easier for clients
to form a trust relationship with the checking proxy than
with the component itself. This premise is consistent with
a highly dynamic model of component-based software con-
struction where there are many component providers but
relatively few administrators of checking proxies.

This work is also predicated on the availability of a speci-
fication for the remote component. When components are
provided without such descriptions of behavior, clients are
forced to develop (either implicitly or explicitly) their own
model for this behavior. Although not designed for this pur-
pose, our framework could be viewed as a way for clients to
validate a constructued specification of remote component
behavior. That is, rather than viewing testing as a valida-
tion that the implementation satisfies the specification, it
can be viewed as a validation that the specification captures
the behavior of the actual implementation.

Although the violation of a progress property cannot be de-
tected during any finite execution, experience suggests that
it is still useful to monitor these properties [4]. Possible
violations can be reported when progress has failed to oc-
cur within some threshold time. While progress properties
have not been our focus, this conservative approach is one
promising way to incorporate them into our infrastructure.

9. ACKNOWLEDGMENTS

We thank the members of the Distributed Components group
at the Ohio State University as well as the anonymous refer-
ees for their valuable comments. This work is supported by

an ITR award from the National Science Foundation (grant
CCR-0081596) and by the Ohio Board of Regents.

10. REFERENCES
[1] W.-P. de Roever and K. Engelhardt. Data Refinement:
Model-Oriented Proof Methods and their Comparison.
Number 47 in Cambridge Tract on Theoretical
Computer Science. Cambridge University Press, 1998.

[2] C. Della Torre Cicalese and S. Rotenstreich.
Behavioral specification of distributed software
component interfaces. IEEE Computer, 32(7):46-53,
July 1999.

[3] S. H. Edwards, G. Shakir, M. Sitaraman, B. W.
Weide, and J. Hollingsworth. A framework for
detecting interface violations in component-based
software. In Proceedings of Fifth International
Conference on Software Reuse (ICSR), pages 46-55.
IEEE, June 1998.

[4] C. P. Giles and P. A. G. Sivilotti. A tool for testing
liveness in distributed object systems. In Proceedings
of the 34th International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS
USA 2000), pages 319-328, Santa Barbara, California,
August 2000. IEEE Computer Society.

[6] C. B. Jones. Systematic Software Development Using
VDM. Series in Computer Science. Prentice-Hall
International, Englewood Cliffs, New Jersey 07632,
1986.

[6] R. Kramer. iContract—the Java design by contract
tool. In TOOLS 26: Technology of Object-Oriented
Languages and Systems, pages 295-307, Los Alamitos,
California, 1998. IEEE CS Press.

[7] P. Krishnamurthy and P. A. G. Sivilotti. The
specification and testing of quantified progress
properties in distributed systems. In Proceedings of
the 238rd International Conference on Software
Engineering (ICSE), Toronto, Canada, May 2001.
IEEE and ACM SIGSOFT.

[8] Z. Manna and A. Pnueli. The Temporal Logic of
Reactive and Concurrent Systems, volume 1.
Specification. Springer-Verlag, 175 Fifth Avenue, New
York, New York 10010, 1992.

[9] B. Meyer. Object-Oriented Software Construction.
International Series in Computer Science. Prentice
Hall, 1988.

[10] B. Meyer. Object-Oriented Software Construction.
Prentice-Hall, Upper Saddle River, New Jersey 07458,
second edition, 1997.

[11] J. Misra. A logic for concurrent programming:
Progress. Journal of Computer € Software
Engineering, 3(2):273-300, 1995.

[12] J. Misra. A logic for concurrent programming: Safety.
Journal of Computer & Software Engineering,
3(2):239-272, 1995.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

20]

(21]

(22]

(23]

G. C. Necula. Proof-carrying code. In Conference
Record of POPL ’97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 106-119, Paris,
France, January 1997.

Object Management Group. The Common Object
Request Broker: Architecture and Specification,
October 1999. Minor Revision 2.3.1.

C. M. Ozveren and A. S. Willsky. Observability of
discrete event dynamic systems. IEEE Transactions
on Automatic Control, 35(7):797-805, July 1990.

J. E. Payne, M. A. Schatz, and M. N. Schmid.
Implementing assertions for Java. Dr. Dobb’s Journal,
January 1998.

R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth edition,
1997.

P. J. Ramadage. Observability of discrete event
systems. In Proceedings of the Conference on Decision
and Control. IEEE, December 1986.

D. S. Rosenblum. A practical approach to
programming with assertions. IJEEE Transactions on
Software Engineering, 21(1):19-31, January 1995.

M. Sitaraman, B. W. Weide, and W. F. Ogden. On
the practical need for abstraction relations to verify
abstract data type representations. IEEE Transactions
on Software Engineering, 23(3):157-170, March 1997.

P. A. G. Sivilotti. Specifying and testing the progress
properties of distributed components. In Workshop on
Testing Distributed Component-Based Systems, May
1999. part of the 21st International Conference on
Software Engineering (ICSE).

P. A. G. Sivilotti and C. P. Giles. The specification of
distributed objects: Liveness and locality. In S. A.
MacKay and J. H. Johnson, editors, Proceedings of
CASCON ’99, pages 150-160, Toronto, Ontario,
Canada, December 1999.

Visigenic. Programmer’s Guide - Visibroker for Java,
2000. Version 4.1.

