Specification and Testing of
Protocols in Distributed
Object Systems

Prakash Krishnamurthy
Paul A.6. Sivilotti

Dept. of Computer & Info. Science
The Ohio State University

n IDL - Interface Definition

Language
m IDL description is given to a parser.

m Creates repositories, skeletons,
stubs.

IDL |
IDL Parser
stubs skeletons

CORBA Bus

Protocols for Distributed Objects 3

Example: 6UI

interface GUI {
state bool button_down;
state enum {idle, ready, done} status;

(status == idle) next

(status == idle || status == ready)
(button_down) next

(button_down || status == ready)

transient.(status == idle && button_down)

Protocols for Distributed Objects 5

_ Background: CORBA and

IDL
m CORBA

m Industry standard for distributed
object computing

mIDL
m Notation for defining object interface
m Programming language neutral

Protocols for Distributed Objects 2

Extending the IDL

Augmented
IDL Parser

skeletons
+ checks

CORBA Bus

Protocols for Distributed Objects 4

Challenge

m Temporal logic has high “intimidation
factor” for many practitioners

m Focus on a specific subclass of safety
properties: protocols

m Design goals:
m Clean and simple specification notation

m Automated support for run-time
validation

Protocols for Distributed Objects 6

Labeled Transition System

m State

m Finite enumeration of “"phases”

m Collection of simply typed variables
m Transitions

m Arcs labeled with messages

m Method names, argument values

m Indicate how variables are modified

Protocols for Distributed Objects 7

Example: File Access

open

read
‘ [nr:=nr+1]
— _—
\/ write
close [lw:=$1]

Protocols for Distributed Objects 9

Guarded Transitions

m A fransition is enable according to
state (phase and variable values)
m "with" clause indicates guard on variables

<active> read with nr <= 10
<nr = nr+ 1; active>

Protocols for Distributed Objects 11

Example: File Access IDL

interface FileAccess {
void open ();
void close ();
int read ();
void write (int);

Protocols for Distributed Objects

u Protocol Specification in
CertIDL

protocol FileAccess {
state >idle, active;
var int nr = 0, lw;
<idle> open <active>
<active> read <nr := nr + 1; active>
<active> write <lw := $1; active>
<active> close <idle>

Protocols for Distributed Objects

u Example 2: File Access
with Guards

nr<=10 >
read
write

[nr:=nr+l1]
close [lw:=%$2]

open

Protocols for Distributed Objects

Multiplicity of Protocols

m One component may support several
protocol types
protocol FileAccess {..};
protocol UserPrivileges {..};
m Each protocol type, may have several
instances
m Each instance has its own phase and its
own copy of the variables

m A transition updates the state of a
single instance

Protocols for Distributed Objects 13

n Example 3: Multiple File
Access
id=%1->
open read

[id := $0] ‘ [nr:=nr+l]

nr::O

_ id=%$1->
id=%$1-> \/J write
close [lw:=$2]
Protocols for Distributed Objects 15

n Protocol Types: Shared

State and Transitions
m Some state is common to all instances
m eg, the number of open files
m “shared state": phases and variables
m Instance transitions:
m Can use shared state in guards
= Can not modify shared state
m Shared transitions
= Can not use or modify instance state
m Enabled when an instance can accept

Protocols for Distributed Objects 17

IDL Declaration

interface MultipleFileAccess {
int open ():
void close (int);
int read (int);
void write (int, int);

Protocols for Distributed Objects 14

u Protocol Specification in
CertIDL

protocol MultipleFileAccess {

state sidle, active;
var int nr =0, lw, id;
<idle> open <id := $0; active>
<active> read with $1 = id

<nr := nr+ 1; active>
<active> write with $1 = id

<lw := $2; active>
<active> close with $1 = id <idle>

Protocols for Distributed Objects 16

u Protocol Specification in
CertIDL

protocol MultipleFileAccess {
state local >idle, active;
var local int nr =0, lw, id;
var shared int n = 0;

open <n i= n+1>
close <n := n-1>
<idle> open <id := $0; active>
<active> read with $1 = id && n <= 10
<nr := nr+ 1; active>
<active> write with $1 = id
<lw := $2; active>
<active> close with $1 = id <idle>

Protocols for Distributed Objects 18

OHIO

Singleton Protocols

m Some protocols are not meant to be
multiply instantiated
m Original FileAccess protocol
m As written, would accept:
open read open close close
m "Singleton”
= No shared state or shared fransitions

Protocols for Distributed Objects 19

OHIO

Singleton Protocol

singleton protocol FileAccess {
state local »idle, active;
var local int nr = 0, lw;
<idle> open <active>
<active> read <nr := nr + 1; active>
<active> write <lw := $1; active>
<active> close <idle>

Y

Protocols for Distributed Objects 20

OHIO

Other Features

m Synchronized transitions
= Multiple instances accept single message

m Global state
m Abstract state, implementation provided

m Synchronous / asynchronous support
m Messages received and sent

Protocols for Distributed Objects 21

CertIDL

ceitidl genetated

CedLDL Desetiption idl Genetated

-

Protocols for Distributed Objects 22

Tool Architecture

grunmar

Stubs+ Skeletons + Test Hatness

Protocols for Distributed Objects 23

OHIO

Run-Time Validation

RUN TIME MCONITORING

tejected ioexs:

prafogols + predicate checkes

[

asyhe lequest quene

Protocols for Distributed Objects 24

Synchrony vs Asynchrony

MESSA GING MODEL

ss,

teg

B

RR

RS

() wme
.
h
@ “ it
. RS — Recive
.

SR - Send Reply

Protocols for Distributed Objects 25

Related Work

m OO community

m CFSM (S, Prospec)

m Petri nets (P-nut, PROTEAN)
m Estelle (NBS)

mLOTOS (Sedos)

m SDL

Protocols for Distributed Objects 26

Distinguishing Features

m Design focus: run-time validation
m Testing harness implementation
m Hierarchy of protocol “granularity”
m Instance, class, abstract state
m Multiplicity of instantiation
u Coupling transitions, sharing state
m Inclusion of message arguments

Protocols for Distributed Objects 27

Current Status

m Specification notation

m Limitations in mixing send/receive, and
synchronous/asynchronous messages

m Implementation

m CertIDL language and tool suite
extended to support protocol validation

m Evaluation

m Industrial scale application: phone
number activation

Protocols for Distributed Objects 28

Acknowledgements

m Distributed Components research
group at Ohio State
m Charlie Giles, Ramesh Jagannathan
m Funding sources:
u NSF ITR
m Lucent Technologies
m Ohio Board of Regents

Protocols for Distributed Objects 29

