THE OHIO STATE UNIVERSITY

Formal Verification of a Java Component
Using the RESOLVE Framework

Laine Rumreich and Dr. Paul Sivilotti

THE OHIO STATE UNIVERSITY

Overview

« Unique combination of a Java component with
RESOLVE specifications for full formal

verification

« Practicality of an industry-standard programming language
* Robust full-functional verification possible in RESOLVE

Slide 2 of 22

THE OHIO STATE UNIVERSITY

Results

1. Example of the feasibility of combining Java
and RESOLVE, a verification discipline that
uses value semantics

2. Correctness proof for a Java-based Binary
Decision Diagram (BDD) implementation

3. Correction of errors not revealed by an

extensive test suite
Slide 3 of 22

THE OHIO STATE UNIVERSITY

Ongoing and Future Work

Develop an automated theorem prover for a
Java-based component with RESOLVE
specifications

Existing RESOLVE verifiers could be
leveraged with only slight modifications to
discharge many VCs in an automated way

Slide 4 of 22

THE OHIO STATE UNIVERSITY

RESOLVE Background

ave Verify i‘
L] L] L L]
o ion Recursive X
I I I I nts Reverse for ListTemplateoriginal =~ Reverse TT LaTeX .
3 :
4~| procedure Reverse (updates s: List) operationEnsures VC #7
@ - decreases |s.right|
software that allows for PR e
7 len := RightLength(s)
8~ if not AreEqual(len, zero) then s -
f I 'f' t' . 9 variable x: Item ’ s13.right = A
1@ Remove(s, x) -
ormal veriication £ mmeeeo o e
12 | Insert (s, x) 1. is_initial (xg)
.ﬁ Advance(s) 2. is_initial (xq2)
* Uses clean, value-based e ekl Zrevers or '
y - .15 |s13.1eft]| = |reverse (ght) |
17 |end Recursive | .right|
[} L] 18
semantics to ease client-

. . Screenshot of the RESOLVE Verifier Web-IDE
side reasoning

. Defines a mathematical model as an abstract definition for
client reasoning about the component

« Disallows aliasing by removing the assignment operator and

replacing it with swapping
Slide 5 of 22

THE OHIO STATE UNIVERSITY

Background

Challenges of Java Verification

« Aliasing and References

 Assignment operator
 Argument passing with repeated arguments allowed

* Presence of inheritance

* Allows differing mathematical models for
Implementing classes

Slide 6 of 22

THE OHIO STATE UNIVERSITY

Background

A Disciplined Approach to Java

 Alias Control

 Replace assignment with transferFrom method
 Respect ownership of advertised aliases

« Disciplined use of inheritance

 Requiring the same mathematical model for all
Implementing classes

« Separating client and implementer states

« Separating methods into kernel and secondary
Slide 7 of 22

THE OHIO STATE UNIVERSITY

Formal Verification

Correctness Proof

Code

Verification

PR : conditions Mechanically
Specifications —— Re_l_aasbtl);\;ng > Checkable

Loop Invariants / Proofs

and Progress

Metrics Verification
requirements

~

-
-

~
~ -
~

¢4---------

Proofs of
Mgthoq L verification
termination Proof of requirements
' RESOLVE ... Correctness

discipline

Slide 8 of 22

THE OHIO STATE UNIVERSITY

Background

The Binary Decision Diagram

o
[ufy

o
N

o
w

(x1 Axz)V x3

True value False value
T T T T
T~ — T | T | F T
------- T F T T
(x1 Axy) VX3 L i i
F T T T
F T F F
\\q F F T T
T F F F F F

Slide 9 of 22

THE OHIO STATE UNIVERSITY

Background

BooleanStructure Math Model

No repeated

(x4 Axy)V x3 ASSIGNMENT is finite set of integer .
variables

BOOLEAN_STRUCTURE 1is
(sat: finite set of ASSIGNMENT,
exemplar exp
constraint
for all a: ASSIGNMENT wherg (a in exp.sat)
(a is subset of entrigs(exp.vars)) and
| exp.vars | = | entries(exp.vars) |

: string of integer)

sat = { {3}, {1, 2}, {1, 3},
T F {2, 3}, {1, 2, 3} }
vars = <1, 2, 3>

Slide 10 of 22

THE OHIO STATE UNIVERSITY

Formal Verification

Verified Concrete Component

ASSIGNMENT is finite set of integer

BOOLEAN_STRUCTURE is
(sat: finite set of ASSIGNMENT, vars: string of integer)
exemplar exp BooleanStructure
constraint Math Model
for all a: ASSIGNMENT where (a in exp.sat)
(a is subset of entries(exp.vars)) and

| exp.vars | = | entries(exp.vars) |
@convention
NO_EXTRANEOUS_VARIABLES($this.sat, $this.vars) and BooleanStructure
NO_DUPLICATES_IN_VARS($this.vars) Convention and

Correspondence

@correspondence this = ($this.sat, $this.vars)

Slide 11 of 22

THE OHIO STATE UNIVERSITY

Formal Verification

Loop Invariants |

/** _ > _
@updates newSat, ~allAssignments — allAssignments.unseen = allAssignments

*
*
* @maintains entries(~allAssignments.seen) \ $this.sat = newSat
*
*

@decreases |~allAssignments.unseen|
*/
for (Set<Integer> a : a11AssignmenEiZ_£,,———_

// a = allAssignments.next()

Required for
reasoning tables

// Add assignment to new sat if it isn't in the original one
if (!(processAssignment(this.sat, this.vars, a))) {
newSat.add(a);

}
Slide 12 of 22

THE OHIO STATE UNIVERSITY

Formal Verification

Reasoning Tables: copyFrom

State Path Facts Obligations
public void copyFrom(BooleanStructure x) {

SeCO n d a ry 0 for all a: ASSIGNMENT where (a in this.sat) ; Of COd e

(ais subset of entries(this.vars))
| this.vars | = | entries(this.vars) |
Laye red BooleanStructure newExp = this.newInstance(); \ A t . t
Method .. S Istrain
______________________ Y e m e e e mmmm - ==

* @updates newOrder, ~order

* @maintains newOrder = ~order.seen

* @decreases |-~order.unseen]|

=/
for (int v : order) {
7 |~order.unseen;| = 0 newOrder; = ~order.seen; |~order.unseeny| >)
// v = order.next()
8 ~order.seeng = ~order.seen; ¥ <v>
<vy> * ~order.unseeng = ~order.unseen;
newOrder.add(newOrder.length(), v);
9 newOrdery, = newOrder; * <v> newOrdery, = ~order.seeng
|~order.unseeng| < |~order.unseen;|
} // end for nsures
10 newOrderp = ~order.seeng entries(newExp.varss) = entries(newOrder;y)
|~order.unseen ;| = 0 | newExp.vars, | = | entries(newOrdery) |
this.transferFrom(newExp) ;
13 this.vars = newExp.vars,; this.vars = x.vars
this.sat = newExp.sat;, this.sal = x.sat

} // end copyFrom

Slide 13 of 22

THE OHIO STATE UNIVERSITY

Formal Verification

Proofs

* Mechanically checkable proofs for each

Verification Condition from Reasoning
Tables

Slide 14 of 22

THE OHIO STATE UNIVERSITY

Corrections to the Component

Correction of Errors
* |ncorrect Specification

* |ncorrect Implementation

* Errors are despite a rigorous test suite
= 314 unit test cases
» 96.3% code coverage

* Design Pattern Limitation

Slide 15 of 22

THE OHIO STATE UNIVERSITY

Corrections to the Component

Error in Specification

/** VARIABLES(this) = VARIABLES(other) and
* @mathdefinitions this.sat = other.sat

* EQUIVALENT(

* m: BOOLEAN_STRUCTURE, 1

* n: BOOLEAN_STRUCTURE, isEquivalent = EQUIVALENT(this, other)

*): boolean is
* for all p: ASSIGNMENT where
* (p is subset of (entries(m.vars) union entries(n.vars)))
* (EVALUATION(m, p) iff EVALUATION(n, p))
*/
public interface BooleanStructure extends BooleanStructureKernel {

Slide 16 of 22

THE OHIO STATE UNIVERSITY

Corrections to the Component

Error in Specification

/**
* Overflow occurs if |vars| >= 64 *

*|@requires |this.vars| < 64
*/

public String toStringTT() {

Sequence<Integer> thisOrder = this.vars();

long variableMask = 1 << thisOrder.length() - 1;
} -

* 1 (64 bits) left bit shifted by 63 is a very large negative number in two’s complement
Slide 17 of 22

THE OHIO STATE UNIVERSITY

Corrections to the Component

Error iIn Implementation

public void copyFrom(BooleanStructure other) {
BooleanStructure newExp = this.newInstance(); <4 |

Power set of the phen
domain |ty

“

PowerStringElements allAssignments = new PowerStringElements(this.vars());

for (Set<Integer> t : allAssignments) { Enter the conditional
if (other.evaluate(t) -t | if t is a satisfying |s skipped when

newExp.disj(term); <= aSSignment]pty
}
} Re| Order the variables by
;ewExp.r‘eorder(newOrder); q— peq to match the copied Xp)
} /= structure

Slide 18 of 22

THE OHIO STATE UNIVERSITY

RESOLVE Design Pattern CrS

specifisc%‘ﬁgirﬁig ations BooleanStructureKernel []
SecondM j_ Abstract Class
extends
Methods

Kernel Methods (BooleanStructure > |

aysare” cass |
implementa ions ., T implements
ovBIRtAg [BooleanStructureSecondary]
implerR@AiSHons Nends

‘ BooleanStructurel ‘ ‘ BooleanStructure2 ‘

Slide 19 of 22

THE OHIO STATE UNIVERSITY

Design Pattern

The L|m|tat|0n overridden

secondary
, methods ™. |°* expand
implements « isTrueStructure
» isFalseStructure
[BooleanStructureSecondary] - satAssignment

« copyFrom
Nends . negate

‘ BooleanStructurel ‘ ‘ BooleanStructure2 ‘

« satAssignment

« satAssignment

.« expand . expand overriding
+ isTrueStructure + isTrueStructure / secondary
- isFalseStructure - isFalseStructure methods

Slide 20 of 22

THE OHIO STATE UNIVERSITY

Design Pattern

The Limitation

« Limitation was present in Java component software used
by thousands of students over many years

 Limitation corrected by adding a reference class that
does not override any secondary methods

Slide 21 of 22

THE OHIO STATE UNIVERSITY

Conclusions

Formal verification of a Java-based BDD
Implementation

Groundwork for an automated verifier for a Java
component with RESOLVE specifications

Discoveries related to combining an industry-standard
programming language and a specification notation
designed with formal verification and client reasoning

as the priority
Slide 22 of 22

