
Formal Verification of a Java Component
Using the RESOLVE Framework

Laine Rumreich and Dr. Paul Sivilotti

Slide 2 of 22

• Unique combination of a Java component with
RESOLVE specifications for full formal
verification

• Practicality of an industry-standard programming language
• Robust full-functional verification possible in RESOLVE

Overview

Slide 3 of 22

1. Example of the feasibility of combining Java
and RESOLVE, a verification discipline that
uses value semantics

2. Correctness proof for a Java-based Binary
Decision Diagram (BDD) implementation

3. Correction of errors not revealed by an
extensive test suite

Results

Slide 4 of 22

• Develop an automated theorem prover for a
Java-based component with RESOLVE
specifications

• Existing RESOLVE verifiers could be
leveraged with only slight modifications to
discharge many VCs in an automated way

Ongoing and Future Work

Slide 5 of 22

BackgroundRESOLVE
• Design discipline for

software that allows for
formal verification

• Uses clean, value-based
semantics to ease client-
side reasoning

• Defines a mathematical model as an abstract definition for
client reasoning about the component

• Disallows aliasing by removing the assignment operator and
replacing it with swapping

Screenshot of the RESOLVE Verifier Web-IDE

Slide 6 of 22

BackgroundChallenges of Java Verification
• Aliasing and References

• Assignment operator
• Argument passing with repeated arguments allowed

• Presence of inheritance
• Allows differing mathematical models for

implementing classes

Slide 7 of 22

BackgroundA Disciplined Approach to Java
• Alias Control

• Replace assignment with transferFrom method
• Respect ownership of advertised aliases

• Disciplined use of inheritance
• Requiring the same mathematical model for all

implementing classes
• Separating client and implementer states
• Separating methods into kernel and secondary

Slide 8 of 22

Formal Verification
Correctness Proof

Loop Invariants
and Progress

Metrics

Reasoning
Tables

Mechanically
Checkable

Proofs

Proof of
Correctness

Method
termination

Proofs of
verification

requirements

Verification
requirements

Code

Specifications
Verification
conditions

RESOLVE
discipline

Slide 9 of 22

𝐱𝟏 𝐱𝟐 𝐱𝟑 ሺ𝒙𝟏 ∧ 𝒙𝟐ሻ ∨ 𝒙𝟑T T T TT T F TT F T TT F F FF T T TF T F FF F T TF F F F

BackgroundThe Binary Decision Diagram

ሺ𝑥ଵ ∧ 𝑥ଶሻ ∨ 𝑥ଷ
𝑥ଵ

𝑥ଷ𝑥ଶ
T F

False valueTrue value

Slide 10 of 22

BackgroundBooleanStructure Math Modelሺ𝑥ଵ ∧ 𝑥ଶሻ ∨ 𝑥ଷ𝑥ଵ
𝑥ଷ𝑥ଶ

T F sat = { {3}, {1, 2}, {1, 3},
{2, 3}, {1, 2, 3} }

vars = <1, 2, 3>

ASSIGNMENT is finite set of integer

BOOLEAN_STRUCTURE is

(sat: finite set of ASSIGNMENT, vars: string of integer)
exemplar exp
constraint
for all a: ASSIGNMENT where (a in exp.sat)
(a is subset of entries(exp.vars)) and

| exp.vars | = | entries(exp.vars) |

Satisfying
assignmentsDomainNo unexpected

variables
No repeated

variables

Slide 11 of 22

Formal Verification
Verified Concrete Component

ASSIGNMENT is finite set of integer

BOOLEAN_STRUCTURE is

(sat: finite set of ASSIGNMENT, vars: string of integer)
exemplar exp
constraint
for all a: ASSIGNMENT where (a in exp.sat)
(a is subset of entries(exp.vars)) and

| exp.vars | = | entries(exp.vars) |

@convention
NO_EXTRANEOUS_VARIABLES($this.sat, $this.vars) and
NO_DUPLICATES_IN_VARS($this.vars)

@correspondence this = ($this.sat, $this.vars)

ASSIGNMENT is finite set of integer

BOOLEAN_STRUCTURE is

(sat: finite set of ASSIGNMENT, vars: string of integer)
exemplar exp
constraint
for all a: ASSIGNMENT where (a in exp.sat)
(a is subset of entries(exp.vars)) and

| exp.vars | = | entries(exp.vars) |

@convention
NO_EXTRANEOUS_VARIABLES($this.sat, $this.vars) and
NO_DUPLICATES_IN_VARS($this.vars)

@correspondence this = ($this.sat, $this.vars)

@convention
NO_EXTRANEOUS_VARIABLES($this.sat, $this.vars) and
NO_DUPLICATES_IN_VARS($this.vars)

@correspondence this = ($this.sat, $this.vars)

ASSIGNMENT is finite set of integer

BOOLEAN_STRUCTURE is

(sat: finite set of ASSIGNMENT, vars: string of integer)
exemplar exp
constraint
for all a: ASSIGNMENT where (a in exp.sat)
(a is subset of entries(exp.vars)) and

| exp.vars | = | entries(exp.vars) |

ASSIGNMENT is finite set of integer

BOOLEAN_STRUCTURE is

(sat: finite set of ASSIGNMENT, vars: string of integer)
exemplar exp
constraint
for all a: ASSIGNMENT where (a in exp.sat)
(a is subset of entries(exp.vars)) and

| exp.vars | = | entries(exp.vars) |

@convention
NO_EXTRANEOUS_VARIABLES($this.sat, $this.vars) and
NO_DUPLICATES_IN_VARS($this.vars)

@correspondence this = ($this.sat, $this.vars)

BooleanStructure
Math Model

BooleanStructure
Convention and
Correspondence

Slide 12 of 22

Formal Verification
Loop Invariants

/**
* @updates newSat, ~allAssignments
*
* @maintains entries(~allAssignments.seen) \ $this.sat = newSat
*
* @decreases |~allAssignments.unseen|
*/
for (Set<Integer> a : allAssignments) {

// Add assignment to new sat if it isn't in the original one
if (!(processAssignment(this.sat, this.vars, a))) {

newSat.add(a);
}

}

/**
* @updates newSat, ~allAssignments
*
* @maintains entries(~allAssignments.seen) \ $this.sat = newSat
*
* @decreases |~allAssignments.unseen|
*/
for (Set<Integer> a : allAssignments) {

// a = allAssignments.next()

// Add assignment to new sat if it isn't in the original one
if (!(processAssignment(this.sat, this.vars, a))) {

newSat.add(a);
}

}

Required for
reasoning tables

~allAssignments.seen *
~allAssignments.unseen = allAssignments

Slide 13 of 22

Formal Verification

Lines of code

Constraint

Ensures

Reasoning Tables: copyFrom
Secondary

Layered
Method

Slide 14 of 22

• Mechanically checkable proofs for each
Verification Condition from Reasoning
Tables

Formal Verification
Proofs

Slide 15 of 22

• Incorrect Specification
• Incorrect Implementation

• Errors are despite a rigorous test suite
 314 unit test cases
 96.3% code coverage

• Design Pattern Limitation

Corrections to the Component
Correction of Errors

Slide 16 of 22

/**
* @mathdefinitions
* EQUIVALENT(
* m: BOOLEAN_STRUCTURE,
* n: BOOLEAN_STRUCTURE,
*): boolean is
* for all p: ASSIGNMENT where
* (p is subset of (entries(m.vars) union entries(n.vars)))
* (EVALUATION(m, p) iff EVALUATION(n, p))
*/

public interface BooleanStructure extends BooleanStructureKernel {

Corrections to the Component
Error in Specification

VARIABLES(this) = VARIABLES(other) and
this.sat = other.sat

isEquivalent = EQUIVALENT(this, other)

Slide 17 of 22

/**
* …
* @requires |this.vars| < 64
*/
public String toStringTT() {

Sequence<Integer> thisOrder = this.vars();
…

long variableMask = 1 << thisOrder.length() - 1;
…

}

Corrections to the Component
Error in Specification

Overflow occurs if |vars| >= 64 *

* 1 (64 bits) left bit shifted by 63 is a very large negative number in two’s complement

Slide 18 of 22

public void copyFrom(BooleanStructure other) {
BooleanStructure newExp = this.newInstance();
…
PowerStringElements allAssignments = new PowerStringElements(this.vars());
…
for (Set<Integer> t : allAssignments) {
if (other.evaluate(t)) {

…
newExp.disj(term);

}
}
…
newExp.reorder(newOrder);

}

Corrections to the Component
Error in Implementation

Copying is skipped when
sat is empty

Error occurs when
vars is nonempty

Results in an assertion error
because VARIABLES(newExp)
/= entries(newOrder)

New empty structure
Power set of the

domain

Enter the conditional
if t is a satisfying

assignment

Order the variables
to match the copied

structure

Slide 19 of 22

Design PatternRESOLVE Design Pattern
BooleanStructureKernel

BooleanStructure

BooleanStructureSecondary

extends

implements

extends

BooleanStructure1 BooleanStructure2

Interface

Abstract Class

Class
Kernel Methods

“Core”

specifications

method
bodies

BooleanStructure

BooleanStructureSecondary

BooleanStructureKernel
Secondary
Methods

specifications

layered
implementations

overriding
implementations

Slide 20 of 22

Design Pattern
The Limitation

extends

• expand
• isTrueStructure
• isFalseStructure
• satAssignment
• copyFrom
• negate
• …

overriding
secondary
methods

overridden
secondary
methods

BooleanStructureSecondary

implements

BooleanStructure1 BooleanStructure2

• expand
• isTrueStructure
• isFalseStructure
• satAssignment

• expand
• isTrueStructure
• isFalseStructure
• satAssignment
• …

• expand
• isTrueStructure
• isFalseStructure
• satAssignment
• copyFrom
• negate
• …

Slide 21 of 22

• Limitation was present in Java component software used
by thousands of students over many years

• Limitation corrected by adding a reference class that
does not override any secondary methods

Design Pattern
The Limitation

Slide 22 of 22

• Formal verification of a Java-based BDD
implementation

• Groundwork for an automated verifier for a Java
component with RESOLVE specifications

• Discoveries related to combining an industry-standard
programming language and a specification notation
designed with formal verification and client reasoning
as the priority

Conclusions

