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Overview

« Unique combination of a Java component with
RESOLVE specifications for full formal

verification

«  Practicality of an industry-standard programming language
* Robust full-functional verification possible in RESOLVE
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Results

1. Example of the feasibility of combining Java
and RESOLVE, a verification discipline that
uses value semantics

2. Correctness proof for a Java-based Binary
Decision Diagram (BDD) implementation

3. Correction of errors not revealed by an

extensive test suite
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Ongoing and Future Work

Develop an automated theorem prover for a
Java-based component with RESOLVE
specifications

Existing RESOLVE verifiers could be
leveraged with only slight modifications to
discharge many VCs in an automated way
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RESOLVE Background
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semantics to ease client-

. . Screenshot of the RESOLVE Verifier Web-IDE
side reasoning

. Defines a mathematical model as an abstract definition for
client reasoning about the component

« Disallows aliasing by removing the assignment operator and

replacing it with swapping
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Background

Challenges of Java Verification

« Aliasing and References

 Assignment operator
 Argument passing with repeated arguments allowed

* Presence of inheritance

* Allows differing mathematical models for
Implementing classes
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Background

A Disciplined Approach to Java

 Alias Control

 Replace assignment with transferFrom method
 Respect ownership of advertised aliases

« Disciplined use of inheritance

 Requiring the same mathematical model for all
Implementing classes

«  Separating client and implementer states

« Separating methods into kernel and secondary
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Formal Verification

Correctness Proof
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Background

The Binary Decision Diagram
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Background

BooleanStructure Math Model

No repeated

(x4 Axy)V x3 ASSIGNMENT is finite set of integer .
variables

BOOLEAN_STRUCTURE 1is
(sat: finite set of ASSIGNMENT,
exemplar exp
constraint
for all a: ASSIGNMENT wherg ( a in exp.sat )
( a is subset of entrigs(exp.vars) ) and
| exp.vars | = | entries(exp.vars) |

: string of integer)

sat = { {3}, {1, 2}, {1, 3},
T F {2, 3}, {1, 2, 3} }
vars = <1, 2, 3>
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Formal Verification

Verified Concrete Component

ASSIGNMENT is finite set of integer

BOOLEAN_STRUCTURE is
(sat: finite set of ASSIGNMENT, vars: string of integer)
exemplar exp BooleanStructure
constraint Math Model
for all a: ASSIGNMENT where ( a in exp.sat )
( a is subset of entries(exp.vars) ) and

| exp.vars | = | entries(exp.vars) |
@convention
NO_EXTRANEOUS_VARIABLES($this.sat, $this.vars) and BooleanStructure
NO_DUPLICATES_IN_VARS($this.vars) Convention and

Correspondence

@correspondence this = ($this.sat, $this.vars)
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Formal Verification

Loop Invariants |

/** _ > _
@updates newSat, ~allAssignments — allAssignments.unseen = allAssignments

*
*
* @maintains entries(~allAssignments.seen) \ $this.sat = newSat
*
*

@decreases |~allAssignments.unseen|
*/
for (Set<Integer> a : a11AssignmenEiZ_£,,———_

// a = allAssignments.next()

Required for
reasoning tables

// Add assignment to new sat if it isn't in the original one
if (!(processAssignment(this.sat, this.vars, a))) {
newSat.add(a);

}
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Formal Verification

Reasoning Tables: copyFrom

State Path Facts Obligations
public void copyFrom(BooleanStructure x) {

SeCO n d a ry 0 for all a: ASSIGNMENT where ( a in this.sat ) ; Of COd e

( ais subset of entries(this.vars) )
| this.vars | = | entries(this.vars) |
Laye red BooleanStructure newExp = this.newInstance(); \ A t . t
Method .. S Istrain
______________________ Y e m e e e mmmm - ==

* @updates newOrder, ~order

* @maintains newOrder = ~order.seen

* @decreases |-~order.unseen]|

=/
for (int v : order) {
7 |~order.unseen;| = 0 newOrder; = ~order.seen; |~order.unseeny| > )
// v = order.next()
8 ~order.seeng = ~order.seen; ¥ <v>
<vy> * ~order.unseeng = ~order.unseen;
newOrder.add(newOrder.length(), v);
9 newOrdery, = newOrder; * <v> newOrdery, = ~order.seeng
|~order.unseeng| < |~order.unseen;|
} // end for nsures
10 newOrderp = ~order.seeng entries(newExp.varss) = entries(newOrder;y)
|~order.unseen ;| = 0 | newExp.vars, | = | entries(newOrdery) |
this.transferFrom(newExp) ;
13 this.vars = newExp.vars,; this.vars = x.vars
this.sat = newExp.sat;, this.sal = x.sat

} // end copyFrom
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Formal Verification

Proofs

* Mechanically checkable proofs for each

Verification Condition from Reasoning
Tables
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Corrections to the Component

Correction of Errors
* |ncorrect Specification

* |ncorrect Implementation

* Errors are despite a rigorous test suite
= 314 unit test cases
» 96.3% code coverage

* Design Pattern Limitation
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Corrections to the Component

Error in Specification

/** VARIABLES(this) = VARIABLES(other) and
* @mathdefinitions this.sat = other.sat

* EQUIVALENT(

* m: BOOLEAN_STRUCTURE, 1

*  n: BOOLEAN_STRUCTURE, isEquivalent = EQUIVALENT(this, other)

* ): boolean is
* for all p: ASSIGNMENT where
* ( p is subset of (entries(m.vars) union entries(n.vars)) )
* ( EVALUATION(m, p) iff EVALUATION(n, p) )
*/
public interface BooleanStructure extends BooleanStructureKernel {
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Corrections to the Component

Error in Specification

/**
* Overflow occurs if |vars| >= 64 *

*|@requires |this.vars| < 64
*/

public String toStringTT() {

Sequence<Integer> thisOrder = this.vars();

long variableMask = 1 << thisOrder.length() - 1;
} -

* 1 (64 bits) left bit shifted by 63 is a very large negative number in two’s complement
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Corrections to the Component

Error iIn Implementation

public void copyFrom(BooleanStructure other) {
BooleanStructure newExp = this.newInstance(); <4 |

Power set of the  phen
domain |ty

“

PowerStringElements allAssignments = new PowerStringElements(this.vars());

for (Set<Integer> t : allAssignments) { Enter the conditional
if (other.evaluate(t) -t | if t is a satisfying |s skipped when

newExp.disj(term); <= aSSignment ]pty
}
} Re| Order the variables by
;ewExp.r‘eorder(newOrder); q— peq to match the copied Xp)
} /= structure
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RESOLVE Design Pattern CrS

specifisc%‘ﬁgirﬁig ations BooleanStructureKernel [ ]
SecondM j_ Abstract Class
extends
Methods

Kernel Methods ( BooleanStructure > |

aysare” cass |
implementa ions ., T implements
ovBIRtAg [ BooleanStructureSecondary ]
implerR@AiSHons Nends

‘ BooleanStructurel ‘ ‘ BooleanStructure2 ‘
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Design Pattern

The L|m|tat|0n overridden

secondary
, methods ™. |°* expand
implements « isTrueStructure
» isFalseStructure
[ BooleanStructureSecondary ] - satAssignment

« copyFrom
Nends . negate

‘ BooleanStructurel ‘ ‘ BooleanStructure2 ‘

« satAssignment

« satAssignment

.« expand . expand overriding
+ isTrueStructure + isTrueStructure / secondary
- isFalseStructure - isFalseStructure methods
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Design Pattern

The Limitation

« Limitation was present in Java component software used
by thousands of students over many years

 Limitation corrected by adding a reference class that
does not override any secondary methods
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Conclusions

Formal verification of a Java-based BDD
Implementation

Groundwork for an automated verifier for a Java
component with RESOLVE specifications

Discoveries related to combining an industry-standard
programming language and a specification notation
designed with formal verification and client reasoning

as the priority
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