A Cottage Industry of Software Publishing:
Implications for Theories of Composition

K. Mani Chandy, Paolo A.G. Sivilotti, Joseph R. Kiniry

Department of Computer Science,
California Institute of Technology, m/c 256-80,
Pasadena, CA 91125
[mani,paolo,kiniry]@cs.caltech.edu
http://www.infospheres.caltech.edu/

Abstract. This note explores the use of UNITY-based theories to fa-
cilitate a cottage industry of software publishing. The requirements for
such an industry are discussed, the appropriateness of UNITY specifica-
tion and compositional theories for these requirements are analyzed, and
further research opportunities in this area are identified. This work is
based on joint work with Beverly Sanders, and the ideas discussed here
have been explored jointly with Paul Sivilotti and Joseph Kiniry.

1 Introduction: A Cottage Industry of Software
Publishing

Our vision of a cottage industry of software publishing is outlined in this sec-
tion. The discussion is couched in terms of object-oriented systems, but it ap-
plies equally well to other systems. In particular, much of our experience that
prompts the following discussion is from the design, construction, and use of
Infospheres 2.0.[CKRZ98]

The formative years of a cottage industry of software components is taking
place today in the form of the publication and distribution of code, primarily in
the form of Java applets and Beans and ActiveX controls. The term “cottage
industry” derives from the analogy to the cottage industry in manufacturing
just prior to the Industrial Revolution, a time when lone experts painstakingly
manufactured hand-tooled, customized items. This time ended in the Industrial
Revolution, resulting in a new world of manufacturing where standards, inter-
changeable parts, and low-priced, high-reliability items were the norm.[Cox96)

We expect a similar change in the software component industry, and believe
that such a shift will be motivated more by the publication and dissemination
of software by individuals than by companies. We expect this propagation of
new code will take place in a decentralized fashion, similar to publication of
documents on the Web today.

The discussion is presented in terms of publication on the World Wide Web,
though the ideas are generally applicable. The Web is widely used for publishing

* Supported in part by NSF Grant CCR-9527130

and accessing documents. We treat programs as special documents, and we use
the Web for publishing and accessing programs.

We consider publications of (i) classes, (ii) objects which are instances of
classes and (iii) relationships between classes and relationships between objects.
Most of this short note is about publications of classes and objects; we have
insufficient space to discuss relationships at length.

The primary difference between publishing classes and objects is in their
life-cycles. An object usually has a shorter lifetime than a class, but this is not
always the case. An additional distinction is that there are usually many objects
of a given class, but an object is related to few classes.

We take a broad view of “publishing” classes. You publish a class by giving
a specification of the class (and possibly other information as well) and indicat-
ing where the implementation of the class may be found. We are not concerned
with the implementation (i.e., the code for the class) other than that it can
be retrieved. The implementation may be in terms of object code, and the im-
plementation could be encrypted. A class can be composed from other classes,
in which case the implementation has references — such as URLs (Universal
Resource Locators) on the Web — to the other classes.

In our view, a class has three parts: (i) a specification, possibly additional
description of the class, (ii) an implementation of the class, and (iii) evidence
demonstrating that the implementation matches the specification. We call this
evidence “validity evidence”.

Examples of validity evidence include a formal proof of correctness carried
out by a mechanical theorem prover or an expert formalist, a comprehensive test
suite, or references to other people who have used the class successfully. Certain
kinds of evidence give users more confidence than others. Publishing a class
means putting the description and validity evidence in URLs and indicating
where the implementation of the class can be found. Objects and people can
search the Web for appropriate classes and then use them.

Similarly, publishing an object means: (i) putting a description of the object
in a URL and thus allowing other objects to discover your object, (ii) indicating
where the object can be found so that other objects can call methods on it,
and (iii) referencing a document containing evidence that the implementation of
the object matches its description. Your object’s implementation may not (and
usually will not) be available to others, but you provide ways for other objects
to interact with the objects you publish. Collections of objects may organize
themselves into larger objects, and these self-organized composed objects, in
turn, can publish themselves.

There are many aspects to facilitating a cottage industry of software and
many issues in publishing, including:

1. Discovery: deals with finding classes and objects that are published on the
Web.

2. Composition: deals with (i) composing classes to form new classes and
then publishing these new classes, in turn, on the Web, and (ii) likewise
discovering, composing, and publishing objects.

3. Scalability: deals with ensuring that the world-wide pool of classes and
objects can contain millions of items.

4. Commerce: deals with payment, licensing and legal issues. We do not dis-
cuss commerce in this short note.

5. Security and other “ilities”: Security deals with ensuring that your re-
sources (software, data, and hardware) are not misused by another person
or object. There are many other attributes of these systems including per-
formance and reliability. We do not consider security issues here.

Next, we discuss discovery and composition, and then carry out a require-
ments analysis for these activities.

2 Discovery

Discovery is the process by which an object discovers other objects and classes

from a large pool of objects and classes. In our case, this pool is implemented by

the Web. An object searches for classes and objects that implement a specifica-

tion and it then composes these classes and objects. So, one of the key questions

is how are objects described and specified so that other objects can find them?
We first consider discovery for classes and later, for objects.

2.1 Discovery of Classes

There are two ways of thinking about classes: one is in terms of its syntactic
interface and the other is in terms of semantics. Of course, all of us have to be
concerned about both the syntax and semantics of a class interface. In practice
(e.g., CORBA IDL) most object systems carry out compile-time or run-time
checks of syntax, but expect semantic compatibility checking to be the exclusive
responsibility of the programmer. A cottage industry of publishing is facilitated
by pushing compositionality to its limits: The compatibility of interfaces are
determined by semantics and the syntax of method calls is negotiable. Next, we
follow this line of reasoning.

Classes as Abstract Data Types and Theorems. Think of a class as definitions
in two notations and an assertion (with supporting documents such as proofs
or test suites) connecting the two definitions. One notation is the programming
language and the other is the specification language. The fundamental issues do
not depend on precisely how a specification is given or how the assertion relating
specification and implementation is demonstrated.

When you publish a class you (in effect) publish three things: its specification,
its implementation, and an assertion relating the two. The form in which these
three components are published can vary widely. You can, for instance, give
URLs for the description, implementation, and assertion coupled with proof.

Next, we discuss the specification and assertion. (There is not a great deal
to be said about the implementation other than whether the source code and
associated documents are available to the user.)

Relationships. A relationship is an assertion about a set of classes, or a set
of objects, with evidence demonstrating the validity of the relationship. For
instance, a relationship could be that two classes are equivalent. Relationships
are different from classes and objects. Objects searching for classes or other
objects can find relationships and use these relationships in finding appropriate
objects.

Ontologies. We use software classes and types to reflect classes of “real world”
objects. At some basic level, the relationship between a software class and the
class of real-world object that it reflects cannot be proved: it has to be treated
as a given. For instance, we may accept without proof an assertion that a dollar
class truly reflects a real dollar. Classes that are accepted without evidence to
be reflections of the corresponding real-world classes are called ground classes of
a component ontology.[Gru93]

People can publish relationships between classes including relationships be-
tween ground classes. For instance, the Web may contain a relationship between
a U.S. dollar and a Canadian dollar. Here too, we can accept or discount the
published relationship based on several factors.

We can prove properties about relationships between classes. For instance,
we can prove that one class is a refinement of another. Such proofs are relevant
to our infrastructure, but demonstrations of the “equivalence” between classes
and reality are not.

We use markup languages like XML[BPS97] to describe object ontologies. An
example of an evolving, ontology-focused specialization of XML is the Ontology
Markup Language (OML).[Ken98]

Permanence of Specifications and Theorems. People can publish theorems about
class specifications. For instance, you may be publish a “theorem” that ticket
type T of airline X is a refinement of ticket type T’ of airline X”. (For the purposes
of this note we ignore important issues such as version numbers of classes; there-
fore we assume that ticket type T of airline X refers to a unique class, whereas in
reality the type T is likely to have a version number or some other unique id.)

To the extent that specifications and theorems are correct, the collection of
specifications and theorems can only change by addition. Once a theorem is
added to the collection it remains there until proved incorrect. A specification
of version V of class C remains unchanged for ever (unless it is proved wrong).
So, we can think of publications of ground classes, specifications, and theorems
relating classes, in terms of a growing world-wide pool. [SC97]

Search for Classes. Imagine that you have been given the task of developing a
class for a given specification. If you can find a class with this specification on
the Web, and it has the appropriate attributes such as cost and reputation of
the vendor, then you use this class directly. If you cannot find this class then you
may want to search for classes that you can compose to construct your class.
How are you going to search for potential component classes?

The search problem is as follows: Given a specification and a large pool of
specifications of components, mechanically select a set of components that can
be composed to obtain a system with the given specification. This problem is
intractable. So, let us consider a much simpler problem. You come up with a
specification for a desired component and you now search the Web for a compo-
nent with this specification or a stronger specification. (How you come up with
this specification is not our concern here.) Since there is no standard normal form
for specifications, you need a theorem-prover to prove that one specification is
equivalent to, or is a refinement of, another specification. Since theorem-provers
may require interaction from people, and they often require a lot of time, we
want to facilitate search by some other means.

One approach is to associate with each class a description that includes a set
of attribute-value pairs, where both the attribute and value are strings. Typical
attributes include the class’s owner, cost, complexity, size, etc. This description
is used to narrow the search, and only then do we attempt to prove theorems
about the equivalence of specifications. Narrowing the search in this way has
a disadvantage: The use of attribute-value pairs may incorrectly exclude some
classes merely because the attributes and values were slightly different. We have
are still exploring designs of search engines that find components that satisfy a
given specification.

2.2 Discovery of Objects

The following scenario is one that we use in evaluating our model of a cottage
industry of software publishing.

You are appointed the chair of a program committee and you want to de-
termine the time for a video-conference of the committee. You instruct your
appointment-scheduler object to make a tentative appointment in the calen-
dars of all committee members. You give your appointment-scheduler object the
URLs of the home pages of committee members. Can your object carry out its
task? (Note: Many research groups use the term “agent” for our “objects.”)

In our solution, there is a directory of objects associated with a home page.
This directory contains a specification (or at least a description) of the objects
belonging to the owner of the home page. The directory in your home page is
searched to find the appropriate appointment-scheduler objects that schedule
your appointments.

The attribute-value pairs describing an object may extend the attribute-value
pairs of its class. For instance, you may have several objects, from the same class,
that place bids for you in on-line auctions: for example, one object to buy books
and another to buy CDs. The book-buying object will have some attribute-value
pairs that are different from the CD-buying object. If I want to start an auction of
rare books on Mogul miniature paintings, my auction-initiation object will have
to find appropriate book-buying objects and then ensure that the semantics of
the interfaces of the objects are compatible.

The research problem we discuss next is the following: We may need to com-
pose objects that were not designed to be composed with each other. The next
paragraph discusses the motivation for this problem.

Imagine that there are a million people world-wide creating classes and pub-
lishing them on the web, possibly by referencing them in home pages of indi-
viduals or small businesses. Different members of your program committee are
likely to have classes written by different people, and it is possible that these
classes were not derived from a common specification, and were not designed
to be composed with each other. If we want to facilitate a cottage industry of
software publishing we have to take compositionality (or “plug-and-play” in the
vernacular) to its limit, and allow objects that were not designed to be composed
with each other to negotiate protocols with each other so that composition is
possible.

Consider the case where the interface between appointment-scheduling ob-
jects is very simple; one object calls a method on another object to make an
appointment for a specific start time and duration. The specification of the
method can be defined in several ways; for instance in terms of its pre and post
conditions. For the same specification there can be several ways of implementing
the method: We need to give the method name, the names and order of the
arguments, and the protocol used to “serialize” an argument of the method and
pack it into a message at the caller and unpack it at the receiver. Given com-
patible specifications, the objects must be able to negotiate the rest. Publishing
specifications is therefore critical to facilitating a cottage industry of software
publishing.

In summary, our approach defines an interface in terms of the semantics
of method calls. Interfaces are compatible if the semantics of the method calls
required by an object are compatible with the semantics provided by the other
object. Everything, other than the semantics of the method calls, is negotiable.
As with classes, we use attribute-value pairs to narrow down a search for objects,
and then use specifications to determine whether interfaces are compatible.

3 Composition

3.1 Composition of Classes

A class publication consists of (i) its specification, (ii) its implementation, and
(iii) an assertion relating the specification and implementation, coupled with
documentation demonstrating the validity of the assertion. When you create
a class by composing other classes, your assertion that your composed class’
implementation satisfies its specification is valid provided that your proof of
composition is correct and the assertions about correctness are also valid for the
component classes. Thus, the validity of your assertion depends on the validity
of other assertions about components which, in turn, depend on the validity of
assertions of subcomponents, all the way down to the ground classes.

Your publication of your composed class will include the implementation of
its compositional structure. The implementations of the components may be

obtained from the references (e.g., URLs) that you provide, or you may have
some way to package and license the components directly. The publication must
also contain the class specification and the proof of correctness.

One of the most important characteristics of an infrastructure that supports
a cottage industry of software publication is that it facilitates one person creating
and publishing a new component by finding and composing existing components.
Reasoning about systems from the specifications, but not the implementations,
of the components is central to this effort.

3.2 Composition of Objects

When we think about composing classes we usually think of an intelligent human
being creatively putting classes together and proving the necessary theorems. By
contrast, when we think about composition of objects, we should also consider
mechanical composition. Consider, once again, the example of you as chair of a
program committee asking one of your objects to determine a time for a video-
conference meeting of your committee. One scenario is that you yourself, search
the Web, find the appropriate objects belonging to your program committee
members, modify and perhaps recompile your object so that composition is pos-
sible, ask others in your committee to do the same, and only then carry out the
collaboration. The other scenario is that your object does the searching, negoti-
ation of protocols for interaction, and then sets up the collaborative structure.
We are exploring the latter scenario.

4 Using UNITY to Facilitate the Software
Cottage Industry

The central theoretical issue in this domain is that of demonstrating that a com-
posed object satisfies its specification given its compositional structure and the
specifications of its components. Next we show how UNITY and its derivatives
are well suited to deal with this issue.

The most important characteristic of UNITY is that its theory, including its
theory of parallel composition, is based on universal and existential composition
in the predicate calculus. This characteristic is relevant to our vision of a cottage
industry of software components. We need to be able to reason about object
composition in the easiest way possible. For convenience, we summarize the
relevant part of [CS95] which introduces program properties and shows how V
and 3 forms the basis for the logic.

A program property, or just property for short, is a predicate on programs.
Here, we use programs and objects interchangeably. A property is an all-component
or universal property means that the property holds for a composed object
if and only if the property holds for each of its components. Therefore p is
an all-component property if and only if for any system with components Gy,
where k € K:

p(|k:k€K:Gr)=Vk:ke K :pGyg)

Here, || is the parallel composition operator, and so (||k : k € K : Gi) is the
system obtained by composing Gy in parallel for all £k € K. We use p, ¢ and r
for properties and G, H, and K for objects.

The safety properties next and stable are all-component properties. Invariant
is weaker:

(Vk : k € K : invariant. X.G},) = invariant. X.(||k : k € K : Gy)

where invariant.X.G means that state-predicate X is an invariant of G.
Similarly, for always properties:

(Vk : k € K : always. X.Gy) = always. X.(||k: k € K : Gy)

A property is an exists-component or existential property means that the
property holds for a composed system if it holds for any component. Therefore p
is an exists-component property if and only if for any system with components
Gy, where k € K:

p(lk:keK:Gy) < (3k: ke K:pGy)
The progress property transient is an exists-component property. In fact:
transient. X.(||k : k € K : G;) = (3k : k € K : transient. X.Gy,)

Other progress properties such as ~» (leads to) are proved by judicious combi-
nations of all-component and exists-component properties.

Some of the questions that arise in facilitating a software component industry
include:

1. How much of the design of a component should be exposed? A specification
in terms of a large number of next, transient and initial condition properties
may expose too much of a component’s design. If we give specifications in
terms of always and leads-to properties then the specifications may not be
compositional: We may be unable to prove the specifications for the com-
posed object from its compositional structure and the specifications of its
components.

2. Should the specification of a component be tailored to a particular set of
environments for that component? Or, should the specification be totally
general, and work for all environments? What, if any, are the negative con-
sequences of giving specifications for totally general environments?

3. What are good structures for components? For instance, if components are
objects, is composition simplified if arguments of methods are passed by
value rather than by reference?

4. What is the appropriate degree of atomicity that can be implemented with
reasonable efficiency in a large world-wide pool of interacting objects? How
do we define transactions in this context, and how do we define interference
between competing transactions?

We are still exploring these issues. Next, we suggest one set of answers to these
questions. These answers follow from our exploration of using Infospheres 2.0 as
an infrastructure for a pool of objects.

We have to be able to use always and leads-to properties, and we have to
find some way to make these non-compositional properties appear to be compo-
sitional. Restricting reasoning about composition to next, transient and initial
condition properties exposes too much of a component’s design and is too te-
dious. Therefore, a specification for a component is given with some idea of its
intended environments. We use objects where method calls pass arguments by
value and not by reference because that is easier to implement and also doesn’t
make reasoning harder. And, we assume the existence of monitors to manage
atomicity of operations.

We obtain compositionality by using guarantees properties from [CS95]. For
program properties p and g, the program property (p guarantees q) holds for
an object G means that for any object H in which G is a component, if p
holds for H then ¢ holds for H. Therefore, a guarantees property is an exists-
only property. Further, the p and ¢ in a guarantees property can be always and
leads-to properties. When you publish a component you identify the systems in
which expect that component to be used, and you then specify your object using
guarantees properties where the left-hand side of the guarantees property (i.e.,
the p) is a property that you expect the composed system to have. This approach
simplifies proofs of object composition, but it has a price: Your object may be
useful in an application that you hadn’t designed it for, and the guarantees
properties that you used in the specification may not help in proving properties
for that application.

See the references in [CS95] and [CM88,CM88,MS96,SC97] for further dis-
cussion and past work on the material of this section.

5 Conclusion

This paper is an exploration of issues that stem from attempting to facilitate a
cottage industry of software components. We are exploring the use of UNITY
because it has a simple compositional structure based on universal and existential
quantification that gives rise to all-component and exists-component properties
(respectively). There are many other issues including the ones we listed above.
This is an ongoing effort, and we have just begun.

References

[BPS97] Tim Bray, Jean Paoli, and C.M. Sperberg-McQueen. Extensible Markup
Language (XML) Proposed W3C Recommendation PR-xml-971208, Dec
1997. http://www.w3.org/TR/PR-xml.

[CKRZ98] K. Mani Chandy, Joseph R. Kiniry, Adam Rifkin, and Dan Zimmerman In-
fospheres 2 Users Manual, Mar 1998. http://www.infospheres.caltech.edu/.

[CMsS]

[CS95]

[Cox96]
[Gru93]
[Ken98]
[MS96]

[SC97]

K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Founda-
tion. Addison-Wesley, 1988.

K. Mani Chandy and Beverly A. Sanders. Predicate transformers for rea-
soning about concurrent computation. Science of Computer Programming,
24:129-148, 1995.

Brad Cox. Superdistribution : Objects As Property on the Electronic Frontier
Addison-Wesley, 1996

T. R. Gruber. A translation approach to portable ontologies Knowledge
Acquisition, 5(2):199-220, 1993.

Robert Kent et al. Ontology Markup Language (OML)
http://asimov.eecs.wsu.edu/WAVE/Ontologies/OML/OML-DTD.html.

R. Manohar and P. Sivilotti. Composing processes using modified rely-
guarantee specifications. Caltech technical report CS-TR-96-22, 1996.
Paolo A. G. Sivilotti and K. Mani Chandy, A Distributed Infrastructure for
Software Component Technology. Technical Report CS-TR-97-32, Depart-
ment of Computer Science, California Institute of Technology, September
1997. ftp://ftp.cs.caltech.edu/tr/cs-tr-97-32.ps.Z.

