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• Requiring maximal solutions is important 
for several problems.

• Testing: non-maximal component 
implementations may mask errors in 
clients.

• Scheduling: non-maximally scheduled 
systems satisfy stronger properties.

Strongly-Fair Scheduling

• Given a set of guarded actions.

• Design an algorithm (under an assumption 
of weak-fairness) that ensures that actions 
that are infinitely often enabled are 
infinitely often executed.



Strongly-Fair Scheduling

• Frame the strongly-fair scheduling problem 
as a distributed resource allocation 
problem.

• Model systems where desire to access a 
shared resource is predicated upon the 
behavior of other processes.
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Specification

• Given client specification, design a 
scheduling layer that, when composed with 
a correct client, ensures:

• Safety: No two neighboring processes run 
concurrently.

• Progress: A process that is waiting 
infinitely often is infinitely often run. 
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A waiting processes might not run before 
becoming idle.
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Challenges

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

A correct scheduler must necessarily limit concurrency.

Solution

Ensure safety property by associating with each pair of 
neighbors a shared token.
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To ensure progress, processes lower their priority by a 
nondeterministically chosen amount after running
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Correctness

• Correctness of solution established by a 
metric:

• Every time a process completes a       
idle-waiting-idle cycle, the difference in 
priority between it and higher priority 
processes decreases.

• A process which becomes waiting with no 
higher-priority neighbors eventually runs.

Maximality
The algorithm is maximal with respect to 

the end of running states (i.e., when 
changes in idle/waiting occur).
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Contributions

• Present a formal specification of strongly-
fair scheduling.

• Provide a solution that is both distributed 
and maximal.
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• However, no correct algorithm can be 
maximal with respect to the beginning and 
end of running states.

• A maximal scheduler must allow traces in 
which two processes with a mutual 
neighbor repeatedly run concurrently.
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Ongoing Work

• However, no correct algorithm can be 
maximal with respect to the beginning and 
end of running states.

• A maximal scheduler must allow traces in 
which two processes with a mutual 
neighbor repeatedly run concurrently.

Future work will be to characterize specifications for 
which no maximal implementation exists.

Ongoing Work

• Maximality is noncompositional.

• Current proof technique requires whole-
program analysis.

• Generalize our rely/guarantee-like proof 
technique.

Thanks

Questions?


