
A Distributed Maximal
Scheduler for Strong Fairness

Matthew Lang and Paolo A.G. Sivilotti
The Ohio State University

Maximality

Specification

Implementation

Maximality

• Correct: Every program execution is a member of the
set defined by the specification.

Specification

Implementation

Correctness

Maximality

• Correct: Every program execution is a member of the
set defined by the specification.

• Maximal: Every member of the set defined by the
specification is a possible program execution.

Specification

Implementation

Correctness

Implementation

Specification

Maximality

Maximality

• Requiring maximal solutions is important
for several problems.

• Testing: non-maximal component
implementations may mask errors in
clients.

• Scheduling: non-maximally scheduled
systems satisfy stronger properties.

Strongly-Fair Scheduling

• Given a set of guarded actions.

• Design an algorithm (under an assumption
of weak-fairness) that ensures that actions
that are infinitely often enabled are
infinitely often executed.

Strongly-Fair Scheduling

• Frame the strongly-fair scheduling problem
as a distributed resource allocation
problem.

• Model systems where desire to access a
shared resource is predicated upon the
behavior of other processes.

Specificiation

Specificiation
Idle Waiting Running

Specificiation
Idle Waiting Running

Client

Specificiation
Idle Waiting Running

Client

Scheduler

Specificiation
Idle Waiting Running

Client

Scheduler

Neighbors

Specificiation
Idle Waiting Running

Client

Scheduler

Neighbors

Specificiation
Idle Waiting Running

Client

Scheduler

Neighbors

Specificiation
Idle Waiting Running

Client

Scheduler

Neighbors

Specification

• Given client specification, design a
scheduling layer that, when composed with
a correct client, ensures:

• Safety: No two neighboring processes run
concurrently.

• Progress: A process that is waiting
infinitely often is infinitely often run.

Challenges

?

A waiting processes might not run before
becoming idle.

Challenges

a

b

c

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

Challenges

a

b

c a

b

c

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

Challenges

a

b

c a

b

c a

b

c

a

b

c

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

Challenges

a

b

c a

b

c a

b

c a

b

c

a

b

c

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

Challenges

a

b

c a

b

c a

b

c a

b

c a

b

c

a

b

c

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

Challenges

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

A correct scheduler must necessarily limit concurrency.

Solution

Ensure safety property by associating with each pair of
neighbors a shared token.

Solution

P
ri
o
ri
ty

Ties between processes are decided by assigning processes
relative priorities

Solution

P
ri
o
ri
ty

Ties between processes are decided by assigning processes
relative priorities

To ensure progress, processes lower their priority by a
nondeterministically chosen amount after running

Solution

Rules for exchanging tokens:

Solution

Rules for exchanging tokens:

Solution

Rules for exchanging tokens:

Solution

Rules for exchanging tokens:

Correctness

• Correctness of solution established by a
metric:

• Every time a process completes a
idle-waiting-idle cycle, the difference in
priority between it and higher priority
processes decreases.

• A process which becomes waiting with no
higher-priority neighbors eventually runs.

Maximality
The algorithm is maximal with respect to

the end of running states (i.e., when
changes in idle/waiting occur).

A

B

C

BA C

...

Maximality
The algorithm is maximal with respect to

the end of running states (i.e., when
changes in idle/waiting occur).

A

B

C

BA C

B C B A ...CA

...

Contributions

• Present a formal specification of strongly-
fair scheduling.

• Provide a solution that is both distributed
and maximal.

Ongoing Work
The algorithm is not maximal with respect

to the intervals in which processes run.

A

B

C

BA C

B C B A ...CA

...

Ongoing Work
The algorithm is not maximal with respect

to the intervals in which processes run.

A

B

C

BA C

B C B A ...CA

...

B C A B AC

Ongoing Work
The algorithm is not maximal with respect

to the intervals in which processes run.
P
ri
o
ri
ty

Ongoing Work

• However, no correct algorithm can be
maximal with respect to the beginning and
end of running states.

• A maximal scheduler must allow traces in
which two processes with a mutual
neighbor repeatedly run concurrently.

a

b

c a

b

c a

b

c a

b

ca

b

c

Ongoing Work

• However, no correct algorithm can be
maximal with respect to the beginning and
end of running states.

• A maximal scheduler must allow traces in
which two processes with a mutual
neighbor repeatedly run concurrently.

Future work will be to characterize specifications for
which no maximal implementation exists.

Ongoing Work

• Maximality is noncompositional.

• Current proof technique requires whole-
program analysis.

• Generalize our rely/guarantee-like proof
technique.

Thanks

Questions?

