A Distributed Maximal
Scheduler for Strong Fairness

and Paolo A.G. Sivilotti
The Ohio State University

Maximality

Specification

H Implementation

Maximality

Correctness

Specification

i Implomentation

® Correct: Every program execution is a member of the
set defined by the specification.

Maximality

Correctness Maximality

Specification Specification

Implementation

i Implomentation

® Correct: Every program execution is a member of the
set defined by the specification.

® Maximal: Every member of the set defined by the
specification is a possible program execution.

Maximality

® Requiring maximal solutions is important
for several problems.

® Testing: non-maximal component
implementations may mask errors in
clients.

® Scheduling: non-maximally scheduled
systems satisfy stronger properties.

Strongly-Fair Scheduling

® Given a set of guarded actions.

® Design an algorithm (under an assumption
of weak-fairness) that ensures that actions
that are infinitely often enabled are
infinitely often executed.

Strongly-Fair Scheduling

® Frame the strongly-fair scheduling problem
as a distributed resource allocation
problem.

® Model systems where desire to access a
shared resource is predicated upon the
behavior of other processes.

Specificiation
‘ Idle ‘ ‘ Waiting ‘ ‘ Running ‘
Specificiation
N

‘ Idle ‘ ‘ Waiting ‘ ‘ Running ‘

Specificiation
Specificiation
‘ Idle ‘ ‘ Waiting \‘ ‘ F/{unning ‘
Specificiation
P .
‘ Idle ‘ ‘ Waiting \‘ ‘ F/{unning ‘

Specificiation

‘ Idle ‘ ‘ Waiting ‘ ‘ Running ‘

NG
-

. . .
Specificiation
. N N\,
‘ Idle ‘ ‘ Waiting ‘ ‘ Running ‘
T - __ Cllent_
Scheduler
Neighbors
. . .
Specificiation
. N N\,
Idle ‘ ‘ Waiting ‘ ‘ Running ‘
T - __ Cllent_
Scheduler
Neighbors

\
-

Specification

® Given client specification, design a
scheduling layer that, when composed with
a correct client, ensures:

® Safety: No two neighboring processes run
concurrently.

® Progress:A process that is waiting
infinitely often is infinitely often run.

Challenges

A waiting processes might not run before
becoming idle.

Challenges

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

Challenges

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

o e

Challenges

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

p
PASTANSTAN A"

Challenges

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

p
dod e e

Challenges

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

A correct scheduler must necessarily limit concurrency.

Challenges

No correct scheduler repeatedly allows processes
with a mutual neighbor to run concurrently.

y
A AT AT AT A

\/

Solution

Ensure safety property by associating with each pair of
neighbors a shared token.

Solution

Solution
Ties between processes are decided by assigning processes Ties between processes are decided by assigning processes
relative priorities \

relative priorities

To ensure progress, processes lower their priority by a
nondeterministically chosen amount after running

Priority
Priority

Solution Solution

Rules for exchanging tokens: Rules for exchanging tokens:

Solution Solution

Rules for exchanging tokens:

Rules for exchanging tokens:

Correctness

® Correctness of solution established by a
metric:

® Every time a process completes a
idle-waiting-idle cycle, the difference in
priority between it and higher priority
processes decreases.

® A process which becomes waiting with no
higher-priority neighbors eventually runs.

Maximality

The algorithm is maximal with respect to
the end of running states (i.e., when
changes in idle/waiting occur).

| [1
= 1 =
| [| [|

o W >

Maximality

The algorithm is maximal with respect to
the end of running states (i.e., when
changes in idle/waiting occur).

Contributions

® Present a formal specification of strongly-
fair scheduling.

® Provide a solution that is both distributed
and maximal.

A | | []
5 [| e
C | | | |
B CA B CA
Ongoing Work
The algorithm is not maximal with respect
to the intervals in which processes run.
A | |]
5 [| .
C | | | |

Ongoing Work

The algorithm is not maximal with respect
to the intervals in which processes run.

A | |

B B CA CAB BC ACA ..

Ongoing Work

The algorithm is not maximal with respect
to the intervals in which processes run.

Priority

Ongoing Work

® However, no correct algorithm can be
maximal with respect to the beginning and
end of running states.

® A maximal scheduler must allow traces in
which two processes with a mutual
neighbor repeatedly run concurrently.

AT AT AT &
£ v Ve ve

Ongoing Work

® However, no correct algorithm can be
maximal with respect to the beginning and
end of running states.

® A maximal scheduler must allow traces in
which two processes with a mutual
neighbor repeatedly run concurrently.

Future work will be to characterize specifications for
which no maximal implementation exists.

Thanks

Questions?

Ongoing Work

® Maximality is noncompositional.

® Current proof technique requires whole-
program analysis.

® Generalize our rely/guarantee-like proof
technique.

