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Abstract. Weak fairness guarantees that continuously enabled actions
are executed infinitely often. Strong fairness, on the other hand, guar-
antees that actions that are enabled infinitely often (but not necessarily
continuously) are executed infinitely often. In this paper, we present
a distributed algorithm for scheduling actions for execution. Assuming
weak fairness for the execution of this algorithm, the schedule it provides
is strongly fair. Furthermore, this algorithm is maximal in that it is ca-
pable of generating any strongly fair schedule. This algorithm is the first
strongly-fair scheduling algorithm that is both distributed and maximal.

1 Introduction

An action system models a distributed systems as a set of actions, each of which is
either enabled or disabled. A fairness assumption controls the selection of actions
from this set for execution. For example, weak fairness requires that an action
that is enabled continuously be selected while enabled infinitely often. Strong
fairness, on the other hand, requires that an action that is enabled infinitely
often (but perhaps not continuously) be selected while enabled infinitely often.

Weak fairness is useful because of the minimal assumption it makes and the
simple scheduling algorithm required to implement it: Select every action in-
finitely often. Strong fairness, on the other hand, is useful for simplifying the
design of synchronization and communication protocols since it rules out the
starvation of actions that are repeatedly enabled. While weak fairness reflects
an asynchronous and independent scheduling of individual actions, strong fair-
ness reflects some scheduling coordination to rule out certain pathological traces.
The advantages of both models can be achieved by constructing a strongly-fair
scheduler on top of an assumption of weak fairness.

A program is correct if it can exhibit only behaviors permitted by its specifica-
tion. A correct program is maximal [4] if it can exhibit all behaviors permitted by
its specification. Maximal programs are important for testing component-based
systems because they prevent a component implementation from providing un-
necessarily deterministic behavior and, in this way, masking errors in its clients.
For example, if a scheduling algorithm is not maximal, it is incapable of gener-
ating some traces that are otherwise possible under the corresponding fairness
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assumption. These traces are no longer observable behaviors for the system built
on top of such a limited scheduler.

In this paper, we present a strongly-fair scheduler, layered on top of a weak
fairness assumption. This algorithm is distributed: it does not maintain a global
set of enabled actions and it permits concurrent selection of independent actions.
Furthermore, this algorithm is maximal: any trace that satisfies strong fairness is
a possible behavior of the scheduler. To our knowledge, this is the first strongly-
fair scheduler that is both distributed and maximal.

2 Maximality and Fairness

2.1 Maximality

A program is maximal if it is capable of generating any behavior permitted by
a specification [5,12]. This notion is similar to bisimulation [11,13]. However,
bisimulation involves relating artifacts with similar mathematical representa-
tions, while maximality relates a program text to a formal specification.

Proving the maximality of a program P with respect to a specification S
is carried out in three stages. Firstly, one defines a set of specification variables
mentioned by S and derives properties of traces of these variables from S .
Next, one shows that an arbitrary trace σ ∈ |S| satisfying these properties is
a possible execution of an instrumented version P ′ of P (chronicle correspon-
dence). Finally, one proves that every fair execution of P ′ corresponds to a fair
execution of P (execution correspondence). Since σ is a possible execution of
P ′ and every execution of P ′ corresponds to a possible execution of P , σ is
a possible execution of P . Hence, any trace in S is a possible execution of P .

Constructing P ′ is carried out by adding new variables, assignments to new
variables within existing actions, guards to existing actions, and actions that
assign to only new variables. These additions ensure that safety properties of P
are safety properties of P ′ . The new variables typically include read-only chron-
icle variables that encode the trace σ and auxiliary variables (e.g., variables that
encode the current point in the computation).

Proving chronicle correspondence, requires showing that the execution of P ′

follows a given trace σ . Proving execution correspondence requires showing that
(i) each added guard in P ′ is infinitely often true and (ii) the truth of each added
guard is preserved by the execution of every other action in P ′ . These properties
ensure that each action is infinitely often executed in a state where the additional
guard is true. Thus, every weakly-fair execution of P ′ corresponds to a weakly-
fair execution of P .

2.2 Fairness

Consider the following UNITY [2] program:
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Program fairness
var b : boolean

x, y : int
initially b
assign

A : true −→ x := x + 1 ‖ b := ¬b
B : b −→ y := x

Action A is always enabled. It increments x and sets b to ¬b . Action B
is enabled in states where b is true and assigns to y the value of x .

Weak fairness requires that every action be selected infinitely often. Under this
assumption, the fairness program satisfies: the safety property (i) x increases by
at most one in each step, and the progress properties (ii) x eventually increases
and (iii) b eventually changes value. More formally: (i) x = k next |x−k| ≤ 1 ,
(ii) x = k � x �= k , and (iii) b = k � b �= k . Progress properties (ii)
and (iii) follow from the fact that action A is infinitely often executed in a state
where it is enabled.

The only property involving y is one of safety: at each step of the computa-
tion, y either remains the same or changes to the value of x . Since action B
may never be selected while enabled, no progress properties for y can be proven.
For example, consider the sequence of actions: 〈A, B, A, A, B, A, A, B, . . .〉 . This
schedule is weakly fair since all actions are selected infinitely often, but B never
executes from an enabled state and so y never changes value.

Strong fairness, on the other hand, requires that any action that is infinitely
often enabled be selected while enabled infinitely often. Under strong fairness,
the fairness program satisfies the same properties as it did under weak fairness.
In addition, the program also satisfies new properties, including the progress
property y increases eventually

2.3 Maximality and Scheduling
Assertions should be as strong as possible and must hold in every possible pro-
gram execution. A maximal scheduler ensures that the strongest properties we
prove using the program text and a notion of fairness are the strongest proper-
ties of the actual system behavior. A non-maximal scheduler eliminates possible
executions and therefore allows us to assert stronger properties that hold on only
a subset of possible program executions.

To illustrate, consider a non-maximal strongly-fair scheduler that allows an
action to be disabled at most twice before being scheduled for execution in a
state in which it is enabled. This scheduler is correct—actions which are in-
finitely often enabled are infinitely often executed in a state in which they are
enabled. However, the scheduler clearly generates a small subset of possible cor-
rect schedules.

If we schedule the program fairness using this scheduler, we see action A can
execute at most four times before action B must execute in a state in which it is
enabled. This allows us to prove much stronger properties about y , for example:
x − y ≤ 4 is a program invariant.
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Although we can now assert a stronger program property, this is undesirable,
for instance, in the case of testing. If one were to test the program fairness
composed with such a non-maximal scheduler, one may be led to believe that
x − y ≤ 4 is indeed an invariant of the system. In fact, it would be impossible
to design a test case to expose the fact that it is not.

3 Specification

3.1 Description of the System

The system is comprised of a set of processes, each comprised of two components—
a client layer and a scheduler layer. Clients can be enabled, and an enabled client
can be granted a lock. Holding a lock allows the client to access some resource,
perform some action(s), or otherwise modify the system state, including enabling
or disabling other clients. When a client modifies system state, it simultaneously
increments its own count and releases the lock it holds.

The scheduler layer manages locks. If a process is infinitely often enabled, the
scheduler ensures that it is infinitely often granted a lock. We say two processes
u and v are neighbors if u or v ’s client can affect the other’s enabledness. If
the scheduler guarantees that no two neighboring processes simultaneously hold
a lock, the client layer guarantees that held locks are eventually relinquished.

The composed system generates a strongly-fair schedule—if a process is in-
finitely often enabled, it infinitely often changes its count.

3.2 Formal Specification of the Strong Fairness Problem

The system is comprised of a set of processes, P . All processes have access
to a symmetric neighbor relation N ⊆ P2 . We define N(u, v) if u or v can
affect the other’s enabledness.1. Each process u ∈ P has boolean variables
u.enabled and u.lock representing that process being enabled and holding a
lock, respectively. A third variable, u.count , is the number of times action u
has executed. Since the execution of actions is atomic, there is no state in which
an action is executing. Consequently, we require that when an action u executes,
u.count is incremented.

3.3 Client Layer Specification

The client layer is responsible for execution of the action associated with a
process. Intuitively, a client is “idle” until it is granted a lock. When granted a
lock, the client eventually executes its action and increments its count, releasing
the lock. The specification for client u is:

1 This neighbor relation is irreflexive, it is never the case N(u, u) . This is not to say
that a process cannot enable/disable itself by executing its action; this is captured
in the specification. The irreflexitivity of N only simplifies presentation.
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(∀ v : v �= u : constant v.lock ) (C0)
(∀ v : v �= u : constant v.count ) (C1)
(∀ v, b : ¬N(u, v) : constant v.enabled = b ) (C2)
(∀ v, b, a, k : N(u, v) : stable ¬u.lock ∧ u.count = k

∧ v.enabled = b ∧ u.enabled = a ) (C3)
(∀ v, b, a, k : N(u, v) : u.lock ∧ u.count = k

∧ v.enabled = b ∧ u.enabled = a

unless ¬u.lock ∧ u.count = k + 1 ) (C4)
Hypothesis: invariant (∀ v : N(u, v) : ¬(u.lock ∧ v.lock) ),

invariant u.lock ⇒ u.enabled

Conclusion: u.lock � ¬u.lock (C5)

Properties (C0)–(C2) ensure that clients can modify only the enabledness of
neighbors. Property (C3) ensures that a lock is necessary for a client to act.
Propery (C4) ensures that count is incremented and enabledness of neighbors
affected only with the release of a lock. Property (C5) is a conditional prop-
erty; if the scheduling layer maintains the properties that neighbors do not hold
locks simultaneously and that only enabled clients hold locks, the client layer
guarantees that a lock is eventually relinquished.

The mutual exclusion property and the invariant in the hypothesis of (C5)
are important; neighboring processes are permitted to modify the enabledness
of their neighbors. If two neighboring processes u and v simultaneously hold
locks, a process, say u , may execute its action and disable the other. Then v is
not guaranteed to become re-enabled and execute its action, releasing the lock.

3.4 Scheduler Layer Specification

This layer schedules actions for execution by granting client processes locks—
when a client process holds a lock it is free to execute its associated action.

constant u.count (S0)
stable u.lock (S1)
invariant u.lock ⇒ u.enabled (S2)
invariant (∀ v : N(u, v) : ¬(u.lock ∧ v.lock) ) (S3)
Hypothesis: true � u.enabled, C0, C2, C3, C4, C5,
Conclusion: true � u.lock (S4)

Properties (S0) and (S1) ensure that the scheduling layer does not modify
the count, nor revoke a lock once granted. Property (S2) ensures that locks are
granted only to enabled processes, while property (S3) ensures that neighbors
do not hold locks simultaneously. Property (S4) is a conditional property that
captures the notion of strong fairness. If a correct client process is infinitely often
enabled, the scheduler infinitely often grants the process a lock.
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3.5 Composed Specification

Given the client and scheduler specifications, the composed specification of
the system satisfies the strong fairness property: if a process is infinitely often
enabled, it infinitely often increases its execution count.

Formally, client ‖ scheduler satisfies:

Hypothesis: true � u.enabled

Conclusion: u.count = k � u.count = k + 1

4 Algorithm for Scheduling Layer

Solving the strong fairness scheduling problem entails providing an algorithm
that satisfies the specification of the scheduling layer from the previous section.
In addition, our goal is for this algorithm to be maximal with respect to the
composed specification.

The challenge in designing a strongly fair scheduler lies in limiting
concurrency—no correct scheduler can always allow processes sharing a mu-
tual neighbor to concurrently hold locks. As an illustration, consider the system
with P = {x, y, z} and {〈x, y〉, 〈x, z〉} representing N . Suppose y and z are
enabled while x is disabled. A scheduler that always allows processes sharing a
mutual neighbor to concurrently hold locks permits both y and z to acquire
locks. Now suppose y executes its action, leaving x and y both enabled. Since
z still holds its lock and N(x, z) , x may not acquire a lock. Now suppose z
executes its action, disabling x but leaving z enabled. The system is now in
back in the state where y and z are enabled while x is disabled. A scheduler
that always allows processes with a mutual neighbor to concurrently hold locks
allows this sequence of events to repeat continually, resulting in a schedule where
x is infinitely often enabled but never executed.

We overcome this challenge by bounding the number of times a process allows
its neighbors to hold locks concurrently. Although unintuitive, this will not af-
fect the maximality of our solution: our scheduler will be capable of generating
any schedule satisfying the strong fairness property. Furthermore, any correct
algorithm satisfying the strong fairness scheduler specification can be viewed as
a refinement of our algorithm.

4.1 Scheduler Design

In order to ensure the mutual exclusion property S3 , we associate with each
pair of neighboring processes u, v a shared lock token, tok(u, v) . A process may
only be granted a lock if it holds all of its shared tokens. A process u also
stores a read-only boolean array, u.en , storing the enabledness of its neighbors.
A process v notifies a neighbor u of its enabledness by assigning to u.en[v] .

To ensure progress, each process u is has a height, u.ht , representing its
priority. A process is higher-priority than another if it has greater height. We
require a process’s height to be unique among its neighbors. Ties in priority



364 M. Lang and P.A.G. Sivilotti

between non-neighbors are broken by a static order on processes, say by process
id. We will call lock tokens shared with higher-priority neighbors high tokens
and lock tokens share with lower-priority neighbors low tokens.

A process only changes its priority after it has executed its action and released
a held lock, at which point it lowers its height by a nondeterministically chosen
finite but unbounded amount. A process which has released a lock holds all of
its tokens until it lowers its height, at which point it gives up all its high tokens.

Processes always release tokens to higher-priority neighbors (high neighbors).
An enabled process does not relinquish tokens to lower priority neighbors (low
neighbors) and, in order to limit concurrency while still ensuring progress, a
disabled process releases at most one low token.

In order to ensure there are no wait-cycles, a disabled process u releases a
low token only to its highest priority low neighbor, v . If u.en[w] holds later for
some higher-priority low neighbor w , u retrieves the shared token from v by
assigning true to v.en[u] . It is guaranteed to eventually receive the token as
processes always relinquish high tokens.

In addition, process u includes a boolean variable u.gate . If u.gate is true,
u is free to exchange tokens with its neighbors or grant itself a lock. When u
grants itself a lock, it sets u.gate to false. Upon releasing a lock, the process
sets u.gate to true, lowers its height, and releases its high tokens.

The following predicates are associated with a process u :

– u.sendtok.v for all neighbors v of u . u.sendtok.v is true if a process u
should send its shared token to process v . u.sendtok.v is true if v is a
high neighbor of u and either u.en[v] or ¬u.enabled . u.sendtok.v is true
when v is a low neighbor of u and v is the highest-priority among all low
neighbors of u , w �= v , for which u.en[w] = true .

u.sendtok.v ≡ tok(u, v) = u

∧ ( ( u.ht < v.ht ∧ (¬u.enabled ∨ u.en[v]))
∨ ( u.ht > v.ht ∧ u.en[v]

∧ (∀w : N(u, w) ∧ w.ht < u.ht : tok(u, w) = u )
∧ v.ht = (Maxw : N(u, w) ∧ w.ht < u.ht ∧ u.en[w] : w.ht )))

– u.maylock . u.maylock is true if u is enabled and holds all its tokens.

u.maylock ≡ u.enabled ∧ (∀ v : N(u, v) : tok(u, v) = u )

– u.retr.v for all neighbors v of u . u.retr.v is true if u has granted a low
token to v and now some higher low neighbor of u is enabled.

u.retr.v ≡ tok(u, v) = v

∧ (∃w : N(u, w) ∧ u.en[w] : v.ht < w.ht < u.ht )

Figure 1 shows this implementation of u ’s scheduler layer. Actions Uu,v

and Tu,v are understood to be quantified across all neighbors v of u .
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Program SFu

var u.enabled, u.gate, u.lock : bool
u.ht : integer
u.en : array of bool

initially ( ∀ v : N(u, v) : u.ht �= v.ht )
¬u.lock
u.gate

assign
Uu,v true −→ v.en[u] := u.enabled ∨ u.retr.v
Tu,v u.sendtok.v ∧ u.gate −→ tok(u, v) := v
Lu u.maylock ∧ u.gate −→ u.lock := true;

u.gate := false
Du ¬u.lock ∧ ¬u.gate −→ u.gate := true;

u.ht :=? st u.ht < u.ht′ ∧ ( ∀ v : N(u, v) : u.ht �= v.ht );
( ‖ v : N(u, v) ∧ u.ht < v.ht : tok(u, v) := v )

Fig. 1. Maximal Strong Fairness Scheduling Algorithm

Action Uu,v updates v.en[u] by assigning true if u.enabled or u.retr.v and
assigns false otherwise. Action Tu,v sends a token to v if u is free to exchange
tokens and u.sendtok.v is true. Action Lu grants a lock to process u and stops
further communication by setting u.gate to false. Finally, action Du frees u
to exchange tokens with neighbors, lowers its height by a finite but unbounded
amount, and releases u ’s high tokens. Du is enabled only after a process has
relinquished a lock and executed its action.

Note: In the algorithm SF , we assume that a process can read the height
of its neighbors. In practice, this information can be encoded on shared tokens
as differences in height, and by storing locally the height of the (unique) low
neighbor holding a token.

5 Correctness of SFu

Properties (S0), (S1), and (S2) follow directly from the program text. Property
(S3) is satisfied since a process must hold all its shared tokens to grant itself a
lock and a process does not relinquish its tokens while it holds a lock.

The progress property (S4) (that an infinitely often enabled process holds
a lock infinitely often) requires a more thorough treatment. In the interest of
space, however, we only sketch the key proof ideas here. The complete proof is
available in [9].

In order to prove (S4), we show: (i) the system is free from deadlock, (ii) a pro-
cess with no higher priority neighbors that becomes enabled eventually acquires
a lock, (iii) a continually enabled process eventually is granted a lock, and finally
(iv) an infinitely often enabled process eventually is granted a lock.

Part (i) follows from the acyclicity of the partial order of priorities. The re-
maining parts rely on the identification of a metric. We define u.M to be the
sum of the difference in height between u and all processes with higher priority
than u that are reachable from u by following the neighbor relation through
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higher-priority processes. More formally, we define the set u.ab =
⋃

u.abn where
u.abn is defined by recursion:

u.ab0 = { v | u.ht < v.ht ∧ N(u, v) }
u.abi+1 = { v | (∃w : w ∈ u.abi : N(v, w) ∧ u.ht < w.ht ) }

Then u.M = (
∑

v : v ∈ u.ab : v.ht − u.ht ) .
By definition, u.M is bounded below by zero when u.ab = ∅ and u has

no higher-priority neighbors. Furthermore, u.M is non-increasing unless u ac-
quires a lock and lowers its height. To show the progress property, we demon-
strate that if u.M = k and u is infinitely often enabled, eventually either
u.M < k or u.lock . Since u.M is bounded below and non-increasing unless u
acquires a lock, eventually u acquires a lock.

6 The Maximality of SF

Since maximality is noncompositional, we use the rely-guarantee style proof out-
lined in [10] as a template. This method for proving the maximality of composed
systems involves stipulating that other processes in the system satisfy certain
properties beyond their formal specification and proving the maximality of the
composed system using these properties. These additional properties entail that
the client process our system is composed with is maximal and can be constrained
in a way to establish its maximality.

In the interest of space and clarity, we only present the intuition behind the
proof of maximality in this section. The interested reader should refer to [9] for
a thorough proof of maximality of SF .

In this section we reverse the priority relation described in Section 4 to clarify
presentation and allow the reader to maintain an intuition about the behavior
of the constrained system. In Section 4 a process was higher priority if it had a
greater height and processes lowered their priority by lowering their height. In
this section, we will reverse this—a process has higher priority if it has a lesser
height, thus a process lowers its priority by increasing its height.

6.1 Proving the Maximality of SF

In order to prove SF is a maximal implementation of the strong-fairness specifi-
cation, we need to show that any trace satisfying the strong-fairness specification
is a possible trace of SF . In order to accomplish this, we create a constrained
program SF ′ from SF that accepts as input any trace σ satisfying the strong-
fairness specification. We then show that at each point i in the trace σ , the state
of the system is exactly that of σi . This establishes σ as a possible execution
of SF ′ .

Next we need to show that any fair execution of SF ′ corresponds to a fair
execution of SF . Then, since any trace σ satisfying the specification of the
strong fairness problem is a possible execution of SF ′ , any trace satisfying the
strong fairness problem is a possible execution of SF .
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However, this simple view is not quite complete. Since we want to show that
any schedule of action executions is a possible behavior of the composed sys-
tem, we need to stipulate that the client process composed with SF satisfies
some additional requirements. Namely, we require that this client process can
be constrained to produce client′ which, when composed with SF ′ , can take
the “steps” in the computation that σ dictates. i.e., if at some point i in σ
some process u is to execute and enable/disable itself or its neighbors, client′

can compute this step. The additional requirements are that the client process
is maximal, client′ satisfies the safety properties of the client specification,
and that client′ is created in a way that ensures the correspondence between
executions of client′ and the client process.

In order to compute σ , we introduce a variable p shared by client′ and
SF ′ that marks the current point in the trace (i.e., σp ). We then prove (i) it is
invariant that the current state is σp and (ii) the point p eventually increases.
It follows that σ is a possible execution of SF ′ ‖ client′ .

6.2 A Strong Fairness Trace

Let σ be a stutter-free sequence of tuples σ = 〈σ0, σ1 . . .〉 representing the
state of processes in an execution satisfying the strong-fairness specification.
σi = 〈E, C〉i is a tuple containing two arrays, Ei and Ci , representing the en-
abledness and count of processes in state σi . That is, Eu

i = true if u.enabled
in σi and Cu

i = k if u.count = k in σi . σ is stutter-free in that each tuple
in the sequence differs from the previous by at least one element, unless the
execution is in a state of quiescence (each processes is disabled forever).

Since σ is a correct trace of the strong fairness scheduling problem, it obeys
certain properties. Namely, it satisfies the following: in subsequent states in σ ,
at most one process changes count (by incrementing it by one) and if a process
changes enabledness, a process must change count. Also, if a process is infinitely
often enabled in the trace, it infinitely often changes its count.

Given a trace σ , we create an isomorphic trace σ′ by inserting a stuttering-
state in between every σi and σi+1 . That is, σ′

0 = σ0 and σ′
i+1 is σ′

i if i is
even and is σ(i+1)/2 if i is odd.

6.3 Requirements of client′
u

We require that a client process u can be constrained to produce client′u . The
requirements on client′u are as follows:

– client′u is produced from the client process by only adding new variables,
assignments to new variables, and new guards referencing new and existing
program variables. Furthermore, if random assignments in the client process
are replaced with deterministic assignments, we require that the assigned
value satisfy the predicate on the random assignment. These requirements
ensure that client′u satisfies the safety properties of the client process.

– The additional guards of client′u are infinitely often true and the enabledness
of each guard is preserved by the execution of any other action in the system.
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– At each point p in the computation, it is invariant that u.enabled = Eu
p

and u.count = Cu
p .

– client′u does not assign to σ and only changes p by at most one.
– If SF ′

u ensures u holds a lock at a point p = k in the trace where Cu
k �=

Cu
k+1 (i.e., u executes its action), client′u guarantees that p is incremented

and the lock is released.

These requirements on the client process ensure that client′ will compute the
transitions dictated by σ . It is then the obligation of SF ′ to ensure that processes
hold locks when σ dictates u executes its action and increments its count.

6.4 The Constrained Program SF ′
u

In the constrained program SF ′
u we introduce the following objects not found

in SFu : the input trace σ and the point p , a function u.next to compute the
next point at which process u executes its action and increments its count, a
predicate u.done to indicate whether or not u increments its count again after
the current point in the computation, and a predicate u.quiet which indicates
whether or not u is enabled after the current point in the computation.

Formally, u.quiet , u.done , and u.next are defined as the following.

u.quiet ≡ (∀ i : i ≥ p : ¬Eu
i )

u.done ≡ (∀ i : i ≥ p : Cu
i = Cu

i+1 )

u.next = (Min i : i ≥ p : Cu
i �= Cu

i+1 ) if ¬u.done

(Min i : i ≥ p : (∀ j : j ≥ i : ¬Eu
j ∧

(∀ v : v �= u : v.ht �= j ) ) ) otherwise

Figure 2 shows the instrumented program.
The key property that follows from this instrumentation is that a process u ’s

height corresponds to the next point in the computation when u increments
its count. At that point, u is the highest priority enabled process among its
neighbors (i.e., lowest height). Any process with a higher priority (lower height)
than u at that point is in a state of quiescence.

If a process u has executed for the last time, we set its height to be after the last
point in the trace that it is enabled. This ensures that any process that executes
and enables/disables u will be higher priority than u until u is quiescent. Such
a point is guaranteed to exist by the assumption that the process has executed for
the last time; if no such point exists, the process must be infinitely often enabled
(and therefore execute again).

The motivation for the introduction of stutter states in σ is to ensure that
a process that never executes again can be assigned a unique height. If σ were
stutter-free, it is not guaranteed that such a point exists.
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Program SF ′
u

var u.enabled, u.gate, u.lock : bool
u.ht : integer
u.en : array of bool

initially p = 0
u.enabled = Eu

p

¬u.done ⇒ u.ht = u.next
u.done ⇒ u.ht ≥ min i ( ∀ j : i ≤ j : ¬Eu

j )
( ∀ v : N(u, v) : u.ht �= v.ht )
¬u.lock
u.gate

assign
U ′

u,v true −→
true −→ v.en[u] := u.enabled ∨ u.retr.v

T ′
u,v true −→

u.sendtok.v ∧ u.gate −→ tok(u, v) := v
L′

u (u.ht = p ∧ ¬u.done) ∨ u.quiet −→
u.maylock ∧ u.gate −→ u.lock := true;

u.gate := false
D′

u true −→
¬u.lock ∧ ¬u.gate −→ u.gate := true;

u.ht := u.next;
( ‖ v : N(u, v) ∧ u.ht < v.ht : tok(u, v) := v )

Q′ σi = σi+1 −→ p := p + 1

Fig. 2. Constrained Strong Fairness Scheduling Algorithm

A key invariant of SF ′
u is that if ¬u.done and u.gate hold, u.ht = u.next .

SF ′
u inherits the safety properties of SFu as guards are only strengthened and ex-

isting program variables are not assigned to, except for the replacement of the ran-
dom assignment to u.ht with a deterministic assignment. However, at the point
of the assignment to u.ht , u.next > u.ht and is unique by definition of u.next
and the properties of σ .

6.5 Proof Sketch of the Maximality of SF

There are two main obligations to dispatch: (i) SF ′ ‖ client′ computes σ and
(ii) every fair execution of SF ′ ‖ client′ corresponds to a fair execution of the
original system.

(i) is proved by showing u.enabled = Eu
p ∧ u.count = Cu

p is an invariant of
the system and p = k � p = k+1 . (ii) requires showing that the truth of each
additional guard in the system is preserved by the execution of any other action
and that each additional guard is infinitely often true. Then each additional
guard is executed infinitely often in a state where it is true, corresponding to a
fair execution of the original program.
Proving the invariant: The invariant in (i) is initially true by the initially pred-
icates in SF ′

u . Also, each action of SF ′ maintains the invariant as no action
assigns to the trace, u.enabled , or u.count and the only action that assigns to
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p only increments p in a stuttering state. Thus, since the invariant is also a
property of client′u , it is an invariant of the composed system.
Proving p = k � p = k +1 : There are two cases to consider — the case where
the current point is a stuttering-state, in which action Q′ increments p , and a
non-stuttering state. In a non-stuttering state, there exists some process u such
that Cu

p = Cu
p+1 . It was a requirement on client′u that if u holds a lock in

such a state, client′u eventually increments p . It is the responsibility of SF ′

to ensure that in such a state process u eventually acquires a lock.
At that point in the computation u.next = p and ¬u.done holds. Without loss

of generality, assume u.gate holds as well, so by the invariant of SF ′
u , u.ht = p .

Also, by the way height is assigned u is the highest priority process among all its
neighbors that are enabled. So u eventually acquires all its tokens and acquires
a lock.
Proving the stability of additional guards: Since client′u is required to satisfy this
property, it suffices to show that the guard of L′

u is not falsified by any action
of SF ′

u . It is easy to see that the only actions which might affect the truth of
the additional guard of L′

u are Q′ , which assigns to p , and D′
u , which assigns

to u.ht .
Since u.quiet is stable, neither Q′ nor D′

u can falsify it. Now, if u.ht =
p ∧ ¬u.done hold, it is implied by the invariant that σp �= σp+1 , so Q′ is
disabled in such a state. If action D′

u is enabled, ¬u.lock ∧ ¬u.gate holds.
Then since ¬u.lock ∧ ¬u.gate holds, client′u must have released a lock and
incremented the point, which implies u.ht < p . So if L′

u is enabled, D′
u is not.

Proving additional guards are infinitely often true: Again, since this was a re-
quirement of client′u , we only need consider the guard of L′

u . Now, since u.quiet
is stable and if u.done ever holds, eventually u.quiet holds, it suffices to show
that u.ht = p ∧ ¬u.done is infinitely often true if ¬u.quiet is an invariant
of the trace. Assuming ¬u.quiet is an invariant of the trace, ¬u.done is an
invariant of the trace as well.

Now, if ¬u.gate holds at any point in the computation, it must be the case
¬u.lock holds as well and both continue to hold until eventually D′

u is exe-
cuted. The execution of D′

u in an enabled state ensures u.gate holds. Then
the invariant of SF ′

u dictates that u.ht = u.next and, since u.next ≥ p and
p = k � p = k + 1 , eventually u.ht = p . Thus, the additional guard of L′

u is
infinitely often true.
The Maximality of SF : The preceding arguments establish that any trace σ
satisfying the strong-fairness specification is a possible execution of SF com-
posed with a client process meeting the requirements described. It follows that
SF is a maximal strongly-fair scheduler.

7 Discussion

Fairness is a well-researched and developed notion in existing literature, both
in terms of interaction fairness [1] and in terms of selection of actions in non-
deterministic guarded command programs [8]. Although a large body of work
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surrounds fairness issues, our algorithm is unique in that it is the first solution for
strongly-fair scheduling of atomic actions that is both maximal and distributed.

In [7], Karaata gives a distributed self-stabilizing algorithm for the strongly-
fair scheduling of atomic actions under weak fairness. A key property of the
algorithm is that an action u can disable another action v at most twice before
action v must execute, and therefore this algorithm is not maximal. In addition,
although there is no notion of a “lock,” the algorithm precludes two processes
with a shared neighbor from both having the “right” to execute their actions.
Although this does not affect the possible schedules the algorithm can gener-
ate, it does limit the algorithm from being generalized to a situation where the
mutual exclusion property of the strong-fairness specification can benefit pro-
cesses (e.g., processes perform some computation before releasing the lock and
affecting their neighbors). Then the concurrency of non-neighboring processes
holding locks is a valuable property. Karaata’s algorithm has the advantage of
being self-stabilizing, whereas ours does not. Also, Karaata provides a brief mes-
sage complexity analysis of the algorithm while we make no claims regarding the
message complexity of our algorithm.

In [6], Joung develops a criterion for implementability of fairness notions for
multiparty interactions. If a fairness notion fails to meet the criterion, then
no deterministic scheduling algorithm can meet the fairness requirement in an
asynchronous system. In the general case, both strong interaction fairness and
strong process fairness fail to meet the criterion.

The dining philosophers problem proposed by Dijkstra [3] is superficially sim-
ilar (as also pointed out in [7]) to the strong-fairness problem in that one can
map the state ¬u.enabled to thinking, u.enabled ∧ ¬u.lock to hungry, and
u.enabled ∧ u.lock to eating. However, in the dining philosophers problem, a
process becomes hungry autonomously, not as a result of the behavior of other
processes in the system. Furthermore, processes remain hungry until the arbi-
tration layer affects a change in state to eating.

The possibility for processes to affect the enabledness of neighboring processes
adds complexity to the strong fairness scheduling problem. For example, a so-
lution to the dining philosophers problem can maintain an invariant that if a
process holds a request from a neighbor, that neighbor is hungry. No correspond-
ing invariant can be shown for a solution to the strong-fairness problem without
synchronization between a process and its neighbor’s neighbors.

8 Conclusions

In this work we presented a formal specification of the distributed strong fairness
scheduling problem and described a maximal solution SF to the problem.

The importance of a maximal scheduling algorithm was discussed in detail in
Section 2, making the maximality of the SF algorithm a key contribution of
the work. The maximality of SF also implies that any correct implementation
of the strong-fairness specification is a refinement of the SF algorithm in that
any correct algorithm’s behavior is a subset of the behavior of SF .
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