
Plausible Clocks with Bounded Inaccuracy

Brad T. Moore and Paolo A.G. Sivilotti

The Ohio State University, Columbus OH 43210, USA
{mooreb,paolo}@cse.ohio-state.edu

Abstract. In a distributed system with N processes, time stamps of
size N (such as vector clocks) are necessary to accurately track potential
causality between events. Plausible clocks are a family of time-stamping
schemes that use smaller time stamps at the expense of some accuracy.
To date, all plausible clocks have been designed to use fixed-sized time
stamps, and the inaccuracy of these schemes varies from run to run. In
this paper, we define a new metric, imprecision, that formally charac-
terizes the fidelity of a plausible clock. We present a new plausible clock
system that guarantees an arbitrary constant bound on imprecision. This
bound is achieved by allowing time stamps to grow and shrink over the
course of the computation. We verify the correctness of our algorithm,
present results of a simulation study, and evaluate its performance.

1 Introduction

The events of a distributed system can be ordered by potential causality: whether
one event might have affected another. Determining this ordering between events
is of fundamental importance to a variety of distributed algorithms. For example,
a global snapshot consists of a set of events such that no pair is causally related
[1–3]. Cache-coherence protocols can maintain consistency by ordering updates
to a shared object by potential causality [4–6] Resource allocation algorithms
can use this relation to resolve contention for a shared resource [7, 8].
Many logical time-stamping schemes exist to track potential causality be-

tween events. Lamport clocks [9], for example, time stamp each message and
event with an integer, while vector clocks [10, 11] time stamp each message and
event with an array of integers. Although Lamport clocks require less overhead,
they carry limited information: Lamport clocks order all events that are causally
related but may also order events that are not causally related. On the other
hand, the larger time stamps of vector clocks permit them to be completely
accurate: Vector clocks order all and only events that are causally related.
This trade-off between space and accuracy is inherent to the problem. For

a system with N processes, time stamps of size N are both sufficient and
necessary for complete accuracy [12]. This result means that no time-stamping
scheme can simultaneously guarantee small time stamps and perfect accuracy.
A plausible clock is a time-stamping system that satisfies the requirement that

all events that are causally related be ordered, but not necessarily the additional
requirement that only events that are causally related be ordered [13]. Because

plausible clocks do not guarantee perfect accuracy, they can be implemented with
small time stamps. Several plausible clock schemes have been developed [13, 14]
that use constant-sized time stamps. The accuracy achieved by these schemes
varies from run to run and even over the course of a single execution. Their
performance, therefore, is quantified in terms of their expected-case inaccuracy
and is generally assessed through simulation.
In this paper, we introduce a new performance measure: imprecision. Infor-

mally, the imprecision of a time stamp is the maximum number of incorrect
orderings permitted by such a stamp. Thus, imprecision reflects an upper bound
on the inaccuracy of a time-stamping system. Existing plausible clock algorithms
are parameterized by the size of time stamps used. For any chosen size less than
N , however, the imprecision of such an algorithm can be quite high. In contrast,
we describe a new algorithm that is parameterized by the amount of impreci-
sion. This algorithm allows time stamps to grow and shrink over the course of
the computation as necessary to maintain the desired level of precision. To our
knowledge, this is the first guaranteed precision plausible clock algorithm.
We quantify the performance of our algorithm in two ways. Firstly, we study

the expected-case time-stamp size through simulation. That is, we determine
the average time-stamp size needed to maintain a given level of precision, under
a variety of circumstances. Secondly, we examine the expected-case accuracy
achieved by our algorithm through simulation. That is, we determine how close
the actual inaccuracy comes to the upper bound reflected in the selected level
of imprecision. We compare the performance of our algorithm with that of two
existing plausible clock algorithms.

2 Background and Definitions

2.1 The Model

A distributed system consists of N processes. Processes communicate by message-
passing, which is asynchronous, point-to-point, and fault-free. The execution of
a process pi is a finite sequence of events denoted Hi . Each event is either a
local, send, or receive event. There is a one-to-one correspondence between send
events and their matching receive events. The execution of the system is the set
of all events from the individual histories, H = (∪ i : 1 ≤ i ≤ N : Hi) .

1

The happens before (→) relation [9] orders the events in H by their potential
causal relationship. For two events a ∈ Hi and b ∈ Hj , a→ b if and only if:

1. i = j and a occurs before b on pi ,
2. a is a send event and b is the corresponding receive event, or
3. there exists an event c ∈ H such that a→ c and c→ b .

1 The notation we use for quantification throughout this paper is (op vars :
ranges : exp) , where op is an associative and commutative operator with an
identity element, vars is the set of bound variables, ranges is a predicate restrict-
ing the ranges of the bound variables, and exp is the expression to be quantified.

Two events are concurrent when neither happens before the other:

a ‖ b ≡ ¬(a→ b) ∧ ¬(b→ a) .

2.2 Logical Clocks

A time-stamping system X [13] is a tuple (〈S,
X
→〉, G,X.stamp, X.tag) , where:

S is a set of logical time values used locally (time stamps),
X
→ is an irreflexive transitive relation on time stamps,

G is a set of logical time values appended to messages (time tags),

X.stamp is the time stamping function mapping events to stamps, and

X.tag is the tagging function mapping event time stamps to message time tags.

The relation
X
→ is irreflexive and transitive, therefore 〈S,

X
→〉 is a strict

partial order. This strict partial order induces further relations: for r, s ∈ S ,

r
X
= s ≡ r = s

r
X

‖ s ≡ ¬(r
X
→ s) ∧ ¬(s

X
→ r) ∧ ¬(r

X
= s) .

For convenience, we will overload the definitions of these relations to allow them
to directly compare events of H . For instance, given two events a, b ∈ H ,

a
X
→ b ≡ X.stamp(a)

X
→ X.stamp(b) .

In practice, the function X.stamp is guaranteed to be locally computable
by defining it inductively. First, time stamps are defined for all initial events.
Then, a function on S×G is given that determines the time stamp of an event
based upon the most recent local time stamp and the most recently received
message time tag. When the time-stamping system is clear from context, we will
omit the name and write simply stamp and tag .

2.3 Example: Vector Clocks

The vector clock is a logical clock that characterizes the happens before relation

(i.e., a → b ≡ a
Vector
→ b). A time stamp s ∈ S is a vector of N integers

(S = Z
N). The stamp function is defined inductively. The time stamp of

an initial (local) event on pi is all 0’s except for the ith entry, which is 1.
A subsequent local or send event on pi has the same stamp as its immediate
predecessor on pi , except the i

th entry is incremented. Finally, the time stamp
of a receive event is the element-wise max of the current stamp (with the ith

entry incremented) and the incoming tag.

Time tags are identical to time stamps (G = S). The tag function is the
identify function: The time tag appended to a message is the time stamp of the

corresponding send event. The
Vector
→ relation is defined to be2

r
Vector
→ s ≡ (∀ i :: r[i] ≤ s[i]) ∧ (∃ j :: r[j] < s[j]) .

A vector clock maintains the two important properties. First, events on a
given process are mapped to a strictly increasing sequence of integers. That is,
for two time stamps r = stamp(a) and s = stamp(b) on process pi , a →
b ≡ r[i] < s[i] . Second, a stamp records the most recent happens before event
from each process. For instance, consider a time stamp r = stamp(a) on process
pi . For each entry r[j] where j 6= i , there exists a time stamp s = stamp(b)
on pj such that s[j] = r[j] . This event b is the most recent event on pj that
happens before a . More formally, b→ a ∧ ¬ (∃ c ∈ Hj :: b→ c ∧ c→ a) .

2.4 Plausible Clocks

A time-stamping system P is plausible if and only if it satisfies, for all a, b ∈ H ,

a→ b ⇒ a
P
→ b (1)

a = b ≡ a
P
= b . (2)

Equation (1) requires that a plausible clock’s ordering relation on time stamps
be consistent with the happens before relation between events: Every pair of
causally-related events is correctly ordered by the plausible clock, although some
unrelated (i.e., concurrent) events may also be ordered. Equation (2) requires
that a plausible clock’s time stamps can be used to distinguish different events.

2.5 Inaccuracy

The inaccuracy of a plausible clock is the ratio of the number of incorrectly
ordered event pairs to the number of concurrent event pairs in the system [14].
Formally, we define C as the set of concurrent pairs in the system, and M as
the set of incorrectly ordered pairs. The inaccuracy of a plausible clock P on a
history H , ρ(P,H) , is therefore defined by

C = { (a, b) ∈ H ×H : a ‖ b : (a, b) }

M = { (a, b) ∈ H ×H : a ‖ b ∧ ¬(a
P

‖ b) : (a, b) }

ρ(P,H) =
|M |

|C|
.

Accuracy can then be defined as 1 − ρ(P,H) . Note that ‖ and
P

‖ are both
symmetric, so a single pair of events is counted twice in both C and M .
2 The bound variables i and j will be understand to range from 1 to N and so the
range can be omitted.

2.6 Imprecision

Our goal is to create a plausible clock that can guarantee an arbitrary bound on
inaccuracy. To be practical, there should be no presumption of global information
nor should the clock modify the underlying computation (e.g., by sending extra
messages). Our approach is to bound the inaccuracy by controlling the maximum
possible error permitted by individual time stamps. To this end, we redefine
inaccuracy in terms of this error.
First, we define the local error of a plausible clock to be the number of

mistakes it makes with respect to a given event. More precisely, it is the number
of (concurrent) events that are mistakenly ordered before the event in question.
Formally, we define the local error of P with respect to an event b by

δ(P,H, b) = |{ a ∈ H : a ‖ b ∧ a
P
→ b : a }| .

We can now define the total number of mistakes in terms of the local error for
each event (note, we do not double-count pairs in the definition of local error):

|M | = 2 ∗ (
∑

b ∈ H :: δ(P,H, b)) .

Therefore, inaccuracy can be written as

ρ(P,H) = 2 ∗
(
∑

b ∈ H :: δ(P,H, b))

|C|
.

Our definition of ρ(P,H) is still problematic. We would like to define inac-
curacy in terms of the local error per event; however, it is currently the ratio
between the sum of local error and the total number of concurrent event pairs.
To this end, we define ε(H) as the ratio between the total number of concurrent
pairs and the total number of events:

ε(H) = 1/2 ∗
|C|

|H|
.

For computations that exhibit regular communication patterns and whose pro-
cesses are not partitioned, the value of ε(H) remains constant as H is extended
with new events. If the processes were partitioned (say one process ceases to
communicate), this ratio would increase without bound as H is extended with
new events. For the remainder of the paper, we will assume fault-free executions
where all processes actively communicate within the system. Rewriting the total
number of concurrent pairs in terms of this concurrency ratio, we have

ρ(P,H) = 1/ε(H) ∗
(
∑

b ∈ H :: δ(P,H, b))

|H|
.

Since we assume that ε(H) is a constant, we need only to bound the mean value
of δ in order to bound the inaccuracy. Unfortunately, we cannot use δ directly
in our algorithm; the stamp function is defined inductively over time stamps

and not histories. Therefore, we define a new metric that is based on time stamps
and hence can be used directly by a plausible clock to reason about fidelity. We
call this metric imprecision. The imprecision of a time stamp generated by a
plausible clock is an upper bound on the number of ordering mistakes made for
an event with that time stamp. More formally, let H(P, s) be the set of histories
for which the plausible clock P generates the time stamp s :

H(P, s) = {H : (∃ a ∈ H :: P.stamp(a) = s) : H } .

Imprecision, ψ(P, s) , then is defined by

ψ(P, s) = (MaxH ∈ H(P, s), a ∈ H : P.stamp(a) = s : δ(P,H, a)) .

Intuitively, imprecision is the worst-case value of δ for an event with a given
time stamp. Note that imprecision is independent of history and therefore is a
function of the information contained within a time stamp. If we guarantee that
all time stamps generated during a computation have an imprecision below some
arbitrary bound, K , then the mean value of δ is also below that bound. The
resulting bound on inaccuracy is given by

ρ(P,H) ≤ 1/ε(H) ∗
(
∑

b ∈ H :: ψ(P, P.stamp(b)))

|H|
≤ K/ε(H) .

3 A Guaranteed Precision Plausible Clock

3.1 Logical Time Intervals

With vector clocks, the time stamps of events on process pi all differ in their
ith entry. This one entry orders these events and distinguishes between them.
The other entries serve a different purpose: Each one uniquely identifies the most
recent happens-before event on the corresponding remote process. Our approach
is conceptually similar. Time stamps are vectors where the ith entry orders and
distinguishes between events on pi , while the other entries indicate the most
recent happens-before events on remote processes. The difference is that a range
of values, rather than a single one, is used as an entry in the array and hence
the most recent happens-before events are not uniquely identified.
At the core of our algorithm is the concept of a time interval. A time interval

is a tuple 〈beg, end〉 where beg and end are integers and beg ≤ end . Unlike
the integer entry of vector clocks which corresponds to a single event, a time
interval corresponds to a set of events. The event of interest is within this range.
Thus, when comparing two time intervals, we can conclude something about the
ordering of the respective events of interest only when the ranges do not overlap.
The ordering between two intervals m and n is given by

m
int

< n ≡ m.end < n.beg

m
int
≈ n ≡ ¬(m

int

< n) ∧ ¬(n
int

< m)

m
int

/ n ≡ (m
int

< n) ∨ (m
int
≈ n) .

We define a precise interval to be one in which the begin and end points are
equal. In the case of precise intervals, an overlap reflects exact equality:

precise(m) ≡ m.beg = m.end

m
int
= n ≡ precise(m) ∧ precise(n) ∧ m = n .

Fig. 1. Examples of time interval comparison

3.2 Definition of S and G

A time stamp s ∈ S is a vector of N time intervals. Let min beg(s) (min end(s))
be the minimum begin (end) point in s . Like vector clocks, our time stamps
map the events of a given process to an increasing sequence. That is, for two
time stamps r = stamp(a) and s = stamp(b) on process pi ,

precise(r[i]) ∧ precise(s[i]) (3)

a→ b ≡ r[i]
int

< s[i] . (4)

A time stamp s also satisfies several additional properties. First, all imprecise
intervals of s share the same end value. Second, all precise intervals of s are
greater than the imprecise intervals. Both properties are captured by:

(∀ i : ¬precise(s[i]) : s[i].end =min end(s)) . (5)

Like time stamps, a time tag t is also a vector of N time intervals. It satisfies
all the properties of time stamps and, in addition, the property that imprecise
intervals have the same begin point:

(∀ i : ¬precise(s[i]) : s[i].beg =min beg(s)) . (6)

Thus, G ⊂ S . See Fig. 2 for an illustration of a time stamp and a time tag.

Ordering. The comparison of time stamps in our algorithm is similar to that of

vector clocks. The
P
→ relation is formally defined by:

r
P
→ s ≡ (∀ i :: r[i]

int

/ s[i]) ∧ (∃ j :: r[j]
int

< s[j]) .

Fig. 2. A time stamp (a) and a time tag (b) in a system with 6 processes. Imprecise
entries in a time tag share a common interval

Space Complexity. Since precise intervals can be encoded with a single integer
and all imprecise intervals share the same end point, time stamps can be encoded
with N + 1 integers (i.e., N begin values and one common end value).
For a time tag with R precise intervals, R logN bits are required to encode

the mapping between precise intervals and their respective processes. Since all
imprecise intervals are the same, a time tag requires R(L + logN) + 2L bits,
where L bits are used to encode a single integer.

Imprecision. The size of the intervals determines the imprecision of a time stamp.
In any given history, the local error possible for a stamp s with respect to some
process pi is the size of the i

th interval of s . Hence, the imprecision is the sum
of these interval lengths:

ψ(s) = (
∑

i :: s[i].end− s[i].beg) .

3.3 Definition of stamp

The stamp function is defined inductively for process pi as follows. Initially, all
time stamp entries are precise intervals equal to 〈0, 0〉 except for the ith entry
which is set to 〈1, 1〉 . During a local/send event, the ith entry is incremented.
Thus, if r is the old stamp on pi , the new stamp s is defined by

precise(s[i]) ∧ s[i].end = r[i].end+ 1

(∀ j : j 6= i : s[j] = r[j]) .

Upon receiving a time tag, the max of the beg and end points of each entry is
taken and the ith entry is incremented. Thus, if r is the old stamp on pi and
t is the time tag of the incoming message, the new stamp s is defined by

precise(s[i]) ∧ s[i].end = max(r[i].end, t[i].end) + 1

(∀ j : j 6= i : s[j] = 〈max(r[j].beg, t[j].beg),max(r[j].end, t[j].end)〉) .

Algorithm 1: stamp

Data: r is old stamp on pi , s is new stamp on pi , t is incoming tag
INITIALLY:

for j := 1 to N do s[j] := 〈0, 0〉
s[i] := 〈1, 1〉

LOCAL or SEND EVENT:
for j := 1 to N do s[j] := r[j]
s[i].end := s[i].end + 1
s[i].beg := s[i].end

RECEIVE EVENT:

for j := 1 to N do
s[j].end := max(r[j].end, t[j].end)
s[j].beg := max(r[j].beg, t[j].beg)

end

s[i].end := s[i].end + 1
s[i].beg := s[i].beg

3.4 Definition of tag

The goal of the tag algorithm is to construct the smallest possible time tag while
not exceeding its bound on imprecision. Informally, the time tag is constructed
by iteratively adding the greatest precise intervals until the error of the time
tag is below the imprecision bound, K . The common imprecise interval of the
time tag is formed by taking the max end value and the min beg value of the
remaining intervals not in the time tag. The pseudo-code for tag is Algorithm 2.
The function ith max(i, s) returns the index of the ith largest precise interval
in time stamp s .

3.5 Example

Figure 3 depicts two examples of a process executing three events: a local event,
a receive event, and a send event. In these example, the process is p3 , there are
a total of 6 processes, and the bound on imprecision is 30 . Observe that the
time stamps satisfy property (5), while the time tags satisfy (5) and (6). Also
note that the imprecision of each stamp (and tag) is less than the bound.
When a message is received, the new stamp is calculated as the element-wise

max of the old stamp and the incoming message. The result of this operation is
a valid time stamp (i.e., it satisfies (5)). In Fig. 3(a) the imprecision of the local
stamp increases as the result of an incoming message (from 6 to 15), while in
Fig. 3(b) it decreases (from 6 to 3).
Message tags are constructed from time stamps using the largest possible

common interval such that the imprecision of the tag is less than the bound. In
Fig. 3(b), for example, entries 1,2,4, and 5 are part of the common interval, giving

Algorithm 2: tag

Data: r is the time stamp of the send event, t is the outgoing tag
for j := 1 to N do t[j] := 〈0, 0〉
minbeg := (Min j : 1 ≤ j ≤ N : r[j].beg)
i := 1
k := ith max(i, r)
while (N − i + 1) ∗ (r[k].end−minbeg) > K do

t[k] := r[k]
i := i + 1
k := ith max(i, r)

end

for j := 1 to N do

if t[j] = 〈0, 0〉 then
t[j].end = r[k].end

t[j].beg = minbeg

end

end

an imprecision of 4 ∗ (14 − 10) = 16 . The next largest common interval would
include entry 3 and so would be 〈10, 17〉 . The resulting imprecision, however,
would be 5 ∗ (17− 10) = 35 which exceeds the bound.

Fig. 3. Sample executions illustrating stamp and tag

4 Proofs of Correctness

In this section, we sketch the proof of correctness for our time-stamping scheme.
Only the main theorems and lemmas are given, while details are available in [15].

We first define two operators on time stamps, then use these operators to
show plausibility and boundedness of imprecision.

4.1 The Join (on) and expand Operators

We define the join (r on s) of two time stamps by

(∀ i :: (r on s)[i].beg = max(r[i].beg, s[i].beg)

∧ (r on s)[i].end = max(r[i].end, s[i].end)) .

The stamp function for receive events can be redefined in terms of join. Figure 4
is a graphical representation of this operator.

Fig. 4. The join (on) operator

An important property is that S is closed under join. That is, the join of two
time stamps, r and s , satisfies (5). This closure property allows us to prove,
inductively, that all stamps generated by stamp are indeed elements of S and
all tags generated by tag are indeed elements of G .

Next, we define the expand of a time stamp by

expand(s) = (
∑

i : ¬precise(s[i]) : min end(s)−min beg(s)) .

Thus, expand(s) is the size of the smallest (i.e., shortest common interval)
time tag that can be generated from s .

We can show that the join operation does not increase the worst-case error
of the system. That is, the expand of the join of two time stamps is less than
or equal to the max of their respective expand ’s:

expand(r on s) ≤ max(expand(r), expand(s)) .

This property allows us to prove inductively that the expand of all stamps
generated by stamp and all tags generated by tag is below a specified bound.

4.2 Proof of Plausibility

In order to prove that P is plausible, we begin by showing that the
P
→ relation

holds between pairs of events on the same process as well as send-receive pairs.

Theorem 1. If a and b both occur on a process pi , a→ b ⇔ a
P
→ b .

Theorem 2. If a is a send event and b is the corresponding receive, a
P
→ b .

Another property of P is that the ith (precise) interval can be used to order
events on pi with other events.

Theorem 3. If a and b occur on processes pi and pj respectively, a 6= b ∧

stamp(a)[i]
int
= stamp(b)[i] ⇒ a→ b , and stamp(a)[i]

int

< stamp(b)[i] ⇒ a→
b .

Theorem 4. P is plausible.

Proof. There are two proof obligations: properties (1) and (2) of plausible clocks.

Property (1): a → b ⇒ a
P
→ b . Assume a → b . Therefore, there exists a

chain of events c0, c1, ..., cn where c0 = a and cn = b and (∀ k : 0 ≤
k < n : ck → ck+1) such that adjacent pairs in this chain are either on
the same process or matching send/receive events. From Theorems 1 and 2, we

have (∀ k : 0 ≤ k < n : ck
P
→ ck+1) . Furthermore, since end intervals are

non-decreasing along this chain,
P
→ is transitive along this chain. Therefore,

a
P
→ b .

Property (2): a = b ≡ a
P
= b . The forward direction follows immediately from

the definition of
P
= . For the reverse direction, assume a

P
= b . Let pi (pj) be the

process on which a (b) occurs and let r (s) be stamp(a) (stamp(b)). Since

r
P
= s , r[i]

int
= s[i] and r[j]

int
= s[j] . From (3), both r[i] and s[j] are precise.

From Theorem 3, neither r[j] nor s[i] are precise. Since precise intervals are
greater than imprecise intervals, these two intervals cannot be simultaneously
equivalent unless a = b . ut

4.3 Proof that Imprecision is Bounded

Theorem 5. ψ(stamp(a)) = (
∑

i :: stamp(a)[i].end− stamp(a)[i].beg)

Proof. Consider an event b that occurs on process pj . From Theorem 3, a and
b are correctly ordered when the jth intervals of their stamps are ordered by
int
= or

int

< . Hence, ordering mistakes can only occur when the jth intervals are

related by
int
≈ . From (3) and (4), at most stamp(a)[j].end − stamp(a)[j].beg

such events exist. Thus, (
∑

i :: stamp(a)[i].end − stamp(a)[i].beg) is an

upper bound on the number of incorrectly related events (
P
→ but not →). This

bound is tight since, for any time stamp s a history can be constructed in which
there is an event whose stamp is s and for which (

∑
i :: stamp(a)[i].end −

stamp(a)[i].beg) ordering mistakes are made. ut

5 Experimental Evaluation

We consider a client-server system with 2 clients and 98 servers. A client performs
local events and sends messages to a random server. While waiting for a response,
a client performs only local events. Servers reply to messages in FIFO order, and
only perform local events if there are no outstanding requests from clients. Event
arrivals follow a negative exponential distribution.
For our analysis, we consider only events from the middle of the computation

(i.e., events that have are causally related to some event from each process
which, in turn, is also causally related to some event from each process). We
exclude events at the beginning and end since plausible clocks (including our
own) perform better during the startup of a computation than in steady-state.
The two primary characteristics we evaluate are: the relationship between

message size and inaccuracy; and the difference between the (worst-case) inac-
curacy bound determined by imprecision and the actual (expected-case) inaccu-
racy achieved. The former allows a comparison between our algorithm and other
plausible clock algorithms in terms of trading off accuracy for message overhead.
The latter is unique to our algorithm, where imprecision can be controlled.
Figure 5 depicts the relationship between message size and resulting inac-

curacy. The plausible clocks considered are R-Entries Vector (REV) and Comb
(a combination of REV and k-Lamport) [13]. We fix the k-Lamport component
of Comb to 5 entries while varying the size of its REV component. The results
show that, on average, our algorithm (labeled “Common Interval” in the figure)
yields better accuracy than either of the other two.
Although this figure compares these plausible clocks directly, it is worth re-

membering that these clocks differ in a fundamental way: Our algorithm does
not guarantee a constant message overhead, while other plausible clock algo-
rithms do not guarantee any level of accuracy.3 Therefore, while it is useful
to compare their performance in trading off accuracy for message overhead, the
choice of which algorithm to use will likely be driven by the primary performance
property being optimized.
Figure 6 depicts the relationship between the inaccuracy bound (derived from

imprecision) and the observed inaccuracy. We see that the resulting inaccuracy
is significantly less than the inaccuracy bound. Imprecision measures the worst-
case error per time stamp. Actual runs, however, may not generate events that
result in error equal to each time stamp’s imprecision. Thus, while our algorithm
provides a guarantee on the worst case behavior, it does not do this at the expense
of degrading the expected case inaccuracy.

6 Related Work

Several algorithms have been proposed as scalable solutions to vector clocks. For
instance, in [16] Baldoni and Melideo proposed k -dependency vectors. Their al-

3 Notice that the data points for our algorithm have error bars in the horizontal axis
since time tag size varies.

Fig. 5. Performance comparison with
other plausible clocks

Fig. 6. Actual observed inaccuracy com-
pared to upper bound

gorithm affixes a constant-size vector of integers to application messages. The
trade-off for this approach is that extra computation may be required to de-
tect the causal relationship between events. The algorithm requires a dedicated
checker process to determine the causal order of events.
The definition of plausible clocks was formalized in [13], where it was also

shown that such clocks could be combined to improve accuracy. Two plausible
clock algorithms were presented: REV and k-Lamport, along with their combi-
nation, Comb. In [13, 17], the performance of Comb was analyzed through simu-
lation. The results of those studies showed good performance of Comb and also
the dependency of that performance on several factors (e.g., local history size,
communication pattern, system size). However, formal analysis of the expected
behavior of a plausible clock algorithm was left for future work.
NUREV clocks were proposed in [14]. This plausible clock uses a fixed vector

size and a dynamic mapping of processor ids to vector entries. Several mappings
were proposed to minimize the ordering errors produced by this clock, and hence
maximize the expected accuracy. This work did not consider the cost of encoding
the dynamic map in the time tag.
Unlike these other approaches, our notion of imprecision–since it reflects a

worst-case bound–permits the evaluation of plausible clock performance inde-
pendent of a particular history or set of histories.

7 Conclusion

The contribution of this work is threefold. Firstly, we have defined a new met-
ric, imprecision, which quantifies the worst-case accuracy of a plausible clock
time-stamping system. This metric characterizes the system itself, independent
of any particular history. Existing plausible clocks are parameterized by message
time tag size and (even those with good average-case accuracy) have unbounded
imprecision. Our second contribution is a new plausible clock algorithm which is
parameterized by imprecision. This algorithm guarantees a maximum, bounded
imprecision by varying the size of time tags as needed during a computation.

Finally, we provide an experimental evaluation of this algorithm’s performance.
We find that the expected message size for our algorithm compares favorably
with existing plausible clocks. We also note that since imprecision is a conserva-
tive upper bound on inaccuracy, the actual inaccuracy for a given history may
be considerably less than this guaranteed bound.

References

1. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems 3 (1985) 63–75

2. Netzer, R., Xu, J.: Necessary and sufficient conditions for consistent global snap-
shots. IEEE Transactions on Parallel and Distributed Systems 6 (1995) 165–169

3. Elnozahy, M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-recovery
protocols in message passing systems. Technical Report CMU-CS-96-181, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA (1996)

4. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory:
Definitions, implementation, and programming. Distributed Computing 9 (1995)
37–49

5. Prakash, R., Raynal, M., Singhal, M.: An adaptive causal ordering algorithm suited
to mobile computing environments. Journal of Parallel and Distributed Computing
41 (1997) 190–204

6. Fernández, A., Jiménez, E., Cholvi, V.: On the interconnection of causal memory
systems. In: Proceedings of the Nineteenth Annual ACM Symposium on Principles
of Distributed Computing. (2000) 163–170

7. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM 24 (1981) 9–17

8. Maekawa, M.: A
√

N algorithm for mutual exclusion in decentralized systems.
ACM Transactions on Computer Systems 3 (1985) 145–159

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (1978) 558–565

10. Fidge, C.J.: Timestamps in message-passing systems that preserve the partial
ordering. In: Proc. of the 11th Australian Computer Science Conf. (1988) 55–66

11. Mattern, F.: Virtual time and global states of distributed systems. In: Proceedings
of the International Workshop on Parallel & Distributed Algorithms. Elsevier
Science Publishers B. V. (1989) 215–226

12. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems.
Information Processing Letters 39 (1991) 11–16

13. Torres-Rojas, F.J., Ahamad, M.: Plausible clocks: constant size logical clocks for
distributed systems. Distributed Computing 12 (1999) 179–196

14. Gidenstam, A., Papatriantafilou, M.: Adaptive plausible clocks. In: Proceedings of
the 24th International Conference on Distributed Computing Systems (ICDCS’04),
IEEE Computer Society (2004) 86–93

15. Moore, B.T.: Plausible clocks with bounded inaccuracy. Master’s thesis, The Ohio
State University (2005) available as technical report OSU-CISRC-7/05-TR52.

16. Baldoni, R., Melideo, G.: k-dependency vectors: A scalable causality-tracking pro-
tocol. In: Proceedings of the 11th Euromicro Conference on Parallel, Distributed
and Network-Based Processing. (2003)

17. Torres-Rojas, F.J.: Performance evaluation of plausible clocks. In: Proceedings of
the 7th Euro-Par Conference. (2001) 476–481

