
A Tutorial for CC��

First Edition

1

12
12
12

12
12
12312

12
12123

123
1
1

12
12
12
12

12
121111 1111

1
1

12121121111
111212121

1111212121
1
1
11 1

1
1
1
11
1
11
1111

1
1

12
12
1
1
12
12

Caltech CS�TR������

Paul A�G� Sivilotti and Peter A� Carlin
Compositional Systems Research Group

Department of Computer Science
California Institute of Technology

Caltech Mail Stop ������
Pasadena� California �����

cc���cs�caltech�edu

c������ All Rights Reserved

ii

Acknowledgements

This tutorial owes a great deal to the other members of the Compositional
Systems Research Group at Caltech � Mani Chandy� Carl Kesselman� John
Garnett� Svetlana Kryukova� Tal Lancaster� Berna Massingill� Adam Rifkin�
Mei Su� and John Thornley� Their careful review and criticism helped shape

this document into its current form�

This research was supported in part by NSERC� The research on CC��
object libraries for concurrent computation is funded by ARPA under grant
N����
��
J
��� The research on compositional concurrent notations is

funded by the NSF Center for Research on Parallel Computing under grant
CCR
��������

iii

iv

Contents

� Introduction �

��� The CC�� Programming Language � � � � � � � � � � � � � � �

��� This Tutorial �

	 Creating Parallel Threads of Control �

��� Structured Parallel Blocks� par � � � � � � � � � � � � � � � � �
����� Introduction �

����� Structuring �

����� Sharing Data �
���� Nesting ��

����� Pitfalls ��

����� Examples ��
��� Structured Parallel Loops� parfor � � � � � � � � � � � � � � � �	

����� Introduction �	
����� Sharing Data ��

����� Loop Unraveling ��
���� Pitfalls ��
����� Examples ��

��� Unstructured Parallelism� spawn � � � � � � � � � � � � � � � � �	

����� Introduction �	
����� Argument Copying �	
����� Unstructured Termination � � � � � � � � � � � � � � � � ��

���� Sharing Data ��
����� Pitfalls ��
����� Examples ��

� Atomicity ��

��� Introduction ��

v

��� Controlled Nondeterminism �
��� Deadlock �	

�� Inheritance ��
��� Pitfalls ��
��� Examples �

� Synchronization ��

�� Introduction �

�� Data Dependencies and Flow of Control � � � � � � � � � � � � 	
�� Single
Assignment Arguments and Return Values � � � � � � � ��
� Type Conversions ��
�� Synchronizing Spawned Functions � � � � � � � � � � � � � � � ��

�� Memory Management �
�	 Pitfalls ��
�� Examples ��

� Distributed Hello World �	

��� Introduction to Distributed Computing � � � � � � � � � � � � ��

��� Distributed Hello World ��

� Global Pointers �

��� Introduction �	
��� Dereferencing Global Pointers � � � � � � � � � � � � � � � � � � ��

��� Invoking Functions Through Global Pointers � � � � � � � � � ��

�� Casting Global Pointers � 	�
��� Pitfalls � 	�
��� Examples � 	�

 Processor Objects
�

	�� Introduction � 	�

	�� Declaring Processor Object Types � � � � � � � � � � � � � � � 		
	�� De�ning Processor Object Types � � � � � � � � � � � � � � � � 	�
	� Allocating Processor Objects � � � � � � � � � � � � � � � � � � ��
	�� Using Processor Object Pointers � � � � � � � � � � � � � � � � ��

	�� Deallocating Processor Objects � � � � � � � � � � � � � � � � � ��
	�	 CC�� Computations ��
	�� The ��this Pointer �

	�� Pitfalls �
	��� Examples ��

vi

� Data Transfer Functions ��

��� Introduction ��

��� Building Transfer Functions ��
��� Structures with Local Pointers � � � � � � � � � � � � � � � � � ��
�� Automatic Transfer Function Generation � � � � � � � � � � � � ��
��� Pitfalls ��

��� Examples ��

vii

List of Figures

��� Flow of Control in a Simple Parallel Block � � � � � � � � � � � �
��� Flow of Control in a Parallel Block � � � � � � � � � � � � � � � 	
��� Concurrent Execution of Divide and Conquer Algorithm � � � ��
�� Nesting Blocks Within Parallel Blocks � � � � � � � � � � � � � �

��� Flow of Control in a Basic Parallel Loop � � � � � � � � � � � � ��
��� Flow of Control in a Parallel Loop � � � � � � � � � � � � � � � ��

��� Flow of Control with Atomic Functions � � � � � � � � � � � � �
��� Possible Sequence of Execution for Finding Minimum Element ��

�� E�ect of Single
Assignment Variables on Flow of Control � � �

�� Linear Data Dependency for Calculating Powers of � � � � � � �
�� Binary Tree Data Dependency for Calculating Powers of � � � ��
� A Stream Implemented as a Linked List with Single
Assignment

Links ��

��� Flow of Control in an RPC ��

	�� MergeSort � 		

��� Transferred List Object �	

viii

Chapter 	

Introduction

��� The CC Programming Language

Is parallel programming di�cult Many programmers complain that archi

tecture dependencies� confusing notations� di�cult correctness veri�cation�
and burdensome overhead make parallel programming seem tedious and

arduous� These barriers cast doubt on the practicality of parallel program

ming� despite its many potential bene�ts�

Compositional C�� �CC��� was designed to alleviate the frustrations

of parallel programming by adding a few simple extensions to the sequential
language C��� It is a strict superset of the C�� language so any valid
C or C�� program is a valid CC�� program� Conversly� many classes of

parallel CC�� programs can be simply rewritten as equivalent sequential
programs� For these classes of programs� the developement path can be very
similar to that of the equivalent sequential program� This compatibility with

the C and C�� languages facilitates the transition to the task of parallel
programming for users knowledgeable in those languages�

CC�� extends C�� with the following eight constructs�

par blocks enclose statements that are executed in parallel�

parfor denotes a loop whose iterations are executed in parallel�

spawn statements create a new thread of control executing in parallel with

the spawning thread�

sync data items are used for synchronization�

�

atomic functions control the level of interleaving of actions composed in
parallel�

processor objects de�ne the distribution of a computation�

global pointers link distributed parts of the computation�

data transfer functions describes how information is transmitted between
address spaces�

Despite the simplicity and the small number of extensions� the conjunction
of these constructs� when combined with C��� results in an extremely rich

and powerful parallel programming notation�
The richness of this language is re�ected in its suitability to a wide spec

trum of applications� In fact� CC�� integrates many seemingly disparate
�elds�

Sequential and parallel programming Parallel blocks are notationally

similar to sequential blocks�

Shared and distributed memory models CC�� can be used on shared
or distributed memory architectures as well as across networks which

may be heterogenous�

Granularity CC�� can be used in computations involving a variety of

granularities� ranging from �ne
grain parallelism with frequent syn

chronization between small threads to coarse
grain parallelism with
sparse synchronization between large� distributed processes�

Task and data parallelism Task and data parallel applications can be

expressed in CC��� as well as programs that combine the two�

Synchronization techniques The synchronization mechanisms provided
by CC�� are powerful enough to express any of the traditional im

perative synchronization and communication paradigms�

All of the object
oriented features of C�� are preserved in CC���

These features �especially generic classes and inheritance mechanisms� pro

mote the reuse of code� structure� and veri�cation arguments� Thus� CC��
provides an excellent framework for the developement of libraries and for the
use of software templates in program construction� This reuse is especially

important and useful in the context of parallel programming�

�

��� This Tutorial

This document is divided into two basic parts� The �rst three chapters de

scribe the single address space constructs in CC�� �par� parfor� spawn�
atomic� and sync�� The last four chapters describe the multiple address
space constructs �processor objects� global pointers� and data transfer func

tions��

Each chapter loosely follows this basic outline�

� Introduces one or more constructs� giving motivation and background�

� Introduces semantics and syntax of the construct�s��

� Highlights possible di�culties ��Pitfalls�� in using the construct�s��

� Provides examples of the construct�s� in use�

The source code of the examples located at the end of each chapter are
at the same ftp site �cs�caltech�edu and directory CC���docs�tutorial�

as this tutorial� The names of the �les mentioned in the tutorial match with
the names of the �les in that directory�

In order to learn CC��� and in order to read this tutorial� a basic

understanding of C is assumed� An understanding of the C�� concept of
an object is also assumed� This tutorial uses C and simple C�� syntax�
Many programs in CC��� particularly distributed computations� use more

detailed C�� features� A good reference for these� and C�� in general�

is The C�� Programming Language by Bjarne Stroustrup� available from
Addison
Wesley�

This tutorial is not a complete de�nition of the CC�� language� The

complete language de�nition can be found in the CC���docs directory at

the anonymous ftp site cs�caltech�edu� or as Caltech Technical Report
CS
TR
��
���

This tutorial covers some major restrictions in the current CC�� imple

mentation� The complete set of restrictions is outlined in the release notes�
also in the CC���docs directory�

Direct comments� questions and suggestions about CC�� or this tu

torial to cc��"cs�caltech�edu� Report errors in the implementation to

cc���bugs"cs�caltech�edu�

�

Chapter �

Creating Parallel Threads of

Control

Fundamental to any parallel programming language is the mechanism by
which parallel threads of control are created� In this chapter we introduce
the three mechanisms used in CC���

par� structured parallel block construct

parfor� structured parallel loop construct

spawn� unstructured parallelism

It is important to note that these constructs do not actually distribute
work� or describe where work is to be performed� They simply describe
possible concurrency in a program� If� for example� the program is being

executed on one single
processor workstation� at most one thread can be

executed at any point in time and hence no performance speed
up will be

observed� In this case� the actions of the statements composed in parallel
by the above constructs will execute in some arbitrarily interleaved fashion�

��� Structured Parallel Blocks� par

����� Introduction

The most basic mechanism for creating parallel threads of control in CC��
is the parallel block� A parallel block looks just like a compound statement

in C or C�� with the keyword par in front of it�

par 	

statement��

statement��

���

statement�N

�

Except for a few cases� the statements inside a parallel block can be any

legal C� C��� or CC�� statement� The exceptions are variable declarations
and statements that result in nonlocal changes in the �ow of control� These
limitations will be discussed in more detail in the �Pitfalls� section of this

chapter ��������

A parallel block di�ers from the normal C block in that the order in
which the statements in the block execute is not de�ned� an execution of
a parallel block is an interleaved or possibly concurrent execution of the
statements within the block� The execution of a parallel block is �nished

after all of the statements within the block have �nished executing� Conse

quently� statements after a parallel block will not start to execute until all
the statements within the parallel block terminate�

We do know some things about how the operations in a parallel block
are mixed together� We know that the order of operations within any one

statement in the parallel block is preserved� We also know that regardless
of how long it may take any statement to �nish� each statement in the block

will eventually get a chance to execute� We call the type of execution that
occurs in a parallel block a fair interleaving� There are some pragmatic
issues having to do with implementing fair interleaving� If you have an
application that depends on fairness� you should consult the Appendix for

the particular hardware platforms you are using to get the details�

Let us look at some parallel blocks�

	

int a b d

c � �

par 	

a � �

b � c��

�

d � b��

�

�

The parallel block in this example has two independent threads of con

trol� the �rst assigns the value � to the integer variable a and the second

evaluates the sum c�� and assigns this value to the integer variable b� The
statement assigning the value to d does not execute until both assignments
to a and b have completed� This �ow of control is illustrated in Figure ����

int a,b,d;

c=1;

par {

a = 2; b = c+3;

}

d = b+1;

Figure ���� Flow of Control in a Simple Parallel Block

The statements contained in a parallel block can be function calls� such
as�

par 	

g � gcd�ab�

l � lcm�ab�

s � sum�ab�

�

����� Structuring

The key feature of a parallel block is the structuring it provides to parallel
code� This structuring is a result of the implicit barrier de�ned by a parallel

�

block� As discussed above� a parallel block is de�ned to terminate only when
all statements inside the block have terminated� Thus� the closing brace of a

parallel block represents a barrier that all parallel threads of control within
the block must reach� before the block is terminated�

To illustrate� consider�

	

par 	

a � f���

b � f����

c � g������

�

sum � a�b�c

�

Schematically� the �ow of control is represented in Figure ���� Notice
that the individual threads that assign values to a� b� and c may terminate

in any order� at various times� The block� however� is not terminated until
all three have completed� Because the outer block is sequential� only when
the parallel block terminates can the statement assigning a value to sum

execute� as you would expect from knowing C�

sum = a+b+c;

par {

}

a = f(2); c = g(2,6.5);b = f(31);

Figure ���� Flow of Control in a Parallel Block

Similarly� consider the following example�

	

	

int min max

par 	

min � find�min�A�

max � find�max�A�

�

for �i�min
 i��max
 i���

compute�i�

�

Again� at the end of the parallel block� we know that both findmin��

and findmax�� functions have completed and their return values have been

assigned to min and max respectively�
The same principal applies when a parallel block is part of an enclosing�

perhaps iterating� structure� Consider the following example�

	

int pow�N�

pow��� � �

pow��� � �

for �int i��
 i�N��
 i�i���

par 	

pow�i� � pow�i����pow�i���

pow�i��� � pow�i����pow�i�����

�

�

This concept of an implicit barrier is an extremely powerful and ex

pressive one� Many sequential C or C�� programs can be conveniently
transformed into parallel programs with judicious use of the parallel block�

The following example �nds the minimum element in a global array� The
technique used is that of divide and conquer� where the minimum is found as
the smaller of the minimum of the �rst half and the minimum of the second

half of the array�

�

int A�N�

int min�element �int i int j�

	

if �i��j� return A�i�

else 	

int small� small�

int middle � �i�j���

par 	

small� � min�element�imiddle�

small� � min�element�middle��j�

�

if �small��small�� return small�

else return small�

�

�

Notice that if the keyword par is removed� the resulting program is
a correct solution �albeit a sequential one� to the problem of �nding the
minimum element� The parallel block allows the independent branches of
the recursion to proceed in parallel� The implicit barrier of the parallel

block means that the values of small� and small� have been evaluated and

assigned before the comparison between the two is made� The �ow of control
in this program is illustrated in Figure ����

����� Sharing Data

Because the actions contained in di�erent threads of control in a parallel
block are executed in a parallel� or possibly arbitrarily interleaved� manner�

it should be clear that sharing and modifying data between such threads
can be dangerous� The CC�� language allows you to do dangerous things�
However� you can stay out of trouble by following a simple rule� First a
de�nition�

De�nition A mutable variable is any non
constant �const� variable or

structure whose value or contents can be modi�ed�

The above de�nition may appear redundant� However� in Chapter we
will introduce a new type of variable that is non
constant� and yet whose
contents cannot be modi�ed�

�

min(0,3)

par {

}

min(0,1)

min(0,0) min(1,1)

return A[0]; return A[1];

small1 = A[0] small2 = A[1]

par {

min(2,3)

min(2,2) min(3,3)

par {

return A[2]; return A[3];

small1 = A[2] small2 = A[3]

}

small2 = A[2]

}

1 346A =

return A[2];

small1 = A[1]

return A[1]; return A[2];
//small2<small1 //small1<small2

//small2<small1

Figure ���� Concurrent Execution of Divide and Conquer Algorithm

��

Now for the rule�

If a mutable variable is modi�ed in a thread of a parallel block�

then no other thread of control in the parallel block should make

use of that variable either by writing or by reading the variable��

The following example illustrates the point�

	

int x

par 	

x � �
 ��dangerous sharing

x � �
 ��dangerous sharing
�

�

This parallel block violates the sharing rule for mutable variables� The
mutable integer variable x is modi�ed in both statements of the parallel
block� Though this code may not result in a compile
time error� or even

necessarily a run
time error� it is extremely dangerous� This is because at
the end of the parallel block we can say nothing about the value of x� It
could be �� or �� or something completely di�erent� If mutable variables
are shared in this manner between parallel threads of control� it is almost

certainly a programming error�
Not only should at most one thread of control modify the value of a

mutable variable� but if a mutable variable is modi�ed in one thread� then

no other thread should access the value of that variable� For example�

	

int ns

par 	

s � �
 ��dangerous sharing
n � ��s
 ��dangerous sharing

�

�

Here the �rst statement in the parallel block initializes the value of the
mutable variable s� and the second statement uses the value of s� Again�
this does not necessarily result in a run
time error� but it is almost certainly
a programming error� since we can say nothing about the value of n �or

��

even s for that matter� at the end of the parallel block� Notice that both
examples above are correct sequential programs when the keyword par is

removed� The programmer should therefore take care when parallelizing
sequential code that no inadvertent sharing of mutable data is created by
the creation of parallel blocks�

So the only safe kind of sharing of mutable data between parallel threads

of control is multiple reading of the variable� Examples of this kind are given
in Sections ����� and ������ Make sure you understand why these examples
do not involve dangerous sharing of mutable variables and are indeed correct

parallel programs� In Chapter � we introduce a mechanism for controlling
access to shared mutables� and in Chapter we introduce a new kind of
variable that can be shared between parallel threads of control in a di�erent
manner�

����� Nesting

Parallel blocks can contain simple statements� sequential blocks� or even
other parallel blocks� The behavior of such nesting is precisely what one

would expect� The statements within the sequential block are executed
sequentially with respect to each other� but are composed in parallel with
the other threads of control of the parallel block� For example�

par 	

	

result� � trial�params��

stats� � generate�stats�result��

�

	

result� � trial�params��

stats� � generate�stats�result��

�

�

Here the function trial�� is performed on the argument params� and
the assignment to result� is completed before the function generate stats��

begins� Between the two threads of control� however� there is no ordering
of actions� The statistics could be generated for the �rst trial before the
second trial even begins� or vice versa� or some interleaving of the two could
occur� But within each thread� the order of execution is strictly sequential�

��

Similarly� one of the statements of a parallel block could be another
parallel block� Consider the following general example� where si represents

a generic statement�

par 	

par 	

s�

s�

s�

�

	

s�

par 	

s�

s�

�

s

�

s!

�

The �ow of control for this program is represented in Figure ���

����� Pitfalls

In this section we describe several common errors to be careful to avoid�

�� The interleaving of actions composed in parallel is arbitrary� The

language makes no guarantees about how often� or even how soon�
instructions from a particular thread will be executed� For example�

par 	

while ��� g��

f��

�

The �rst statement in this case is an in�nite loop� Instructions from
this loop could be executed for a very� very long time before a single
instruction from the second thread is chosen for execution� Thus� we

cannot expect to observe function f�� even begin execution�

��

}

s4;

par {

s5; s6;

}

s7;

s8;

s2;s1; s3;

par {

}

par {

Figure ��� Nesting Blocks Within Parallel Blocks

�

�� Declarations are not permitted at the level of scope of a parallel block�
This is consistent with the rules of variable sharing for parallel blocks�

For example�

par 	

int x
 ��ERROR
x � �

�

Within nested levels of scope� however� declarations are permitted�

par 	

	

int s

s � f��

g�s�

�

for �int i��
 i��
 i���

k�i�

�

�� Gotos into� out of� or between statements at the level of scope of a
parallel block are not permitted� In particular� no break� continue�
goto� or return statements are permitted�

In addition� the current implementation of the language places the fol

lowing restrictions on CC�� programs�

�� No exceptions can be thrown inside parallel blocks�

�� A �le or stream on which I�O is performed should be seen as a mutable

variable� Thus� composing I�O operations on the same �le in parallel
is dangerous and should be avoided� We will see a mechanism in
Chapter � that permits safe parallel composition of such operations�
I�O operations on di�erent �les or streams can safely be composed in

parallel with each other�

����� Examples

In this section we give some complete examples that can be compiled and
executed� These examples illustrate the use of the parallel block�

��

Hello World This program displays the traditional greeting �hello

world��

�include �iostream	h�

int main��

�

char �s�� �s�

par �

s� � �hello� �

s� � �world n�

�

cout �� s� �� s� �� endl

return���

�

The assignment of �hello � to s� and of �world� to s� can occur
concurrently or in some arbitrarily interleaved manner� Perhaps the oper

ations required for assignment to s� are executed� and then the operations
required for the assignment to s� are executed� �Such a sequence of op

eration is identical to the execution of the sequential program created by
removing the keyword par�� Perhaps s� is assigned to the string �world�

�rst� and then the assignment of s� occurs� Perhaps the operations for these
two assignments are interleaved in some manner or perhaps they occur in
parallel� Regardless� because s� and s� are distinct mutable variables� these

operations are guaranteed to be noninterfering� Hence� at termination of the
parallel block� we know that s� is the string �hello � and s� is the string
�world��

The program therefore results in the message �hello� world� being dis

played every time� regardless of the actual order of operations�

Finding a Minimum Element This program �nds the minimum el

ement of a statically de�ned integer array� The value of this minimum
element is displayed�

�include �iostream	h�

const int N � �

int A�N� � ��� �� �� �� �� �� !� "�

��

int find�min �int i� int j�

�

if �i��j�

return A�i�

else �

int small�� small�

par �

small� � find�min �i� �j�i����

small� � find�min ��j�i������ j�

�

if �small��small�� return small�

else return small�

�

�

int main��

�

int min � find�min���N���

cout �� �Minimum element is � �� min �� endl

return �

�

As explained in Section ������ the minimum is found recursively as the

smaller of the minimum of the �rst half of the array and the minimum of
the second half of the array� Because the recursive calls operate on di�erent
parts of the array� they are completely independent and can be composed

in parallel�

��� Structured Parallel Loops� parfor

����� Introduction

The construct for parallel composition of a variable number of statements

is parfor� With the exception of the keyword� the syntax of a parfor

statement is the same as the usual C�� for statement�

parfor �int i��
 i�N
 i��� 	

statement��

statement��

���

statement�N

�

�	

This is a parallel loop construct in which the iterations are executed in
parallel with each other� As with the usual C or C�� for loop� the body of

each iteration is executed sequentially� Similar to the parallel block discussed
in Section ���� there is an implicit barrier at the end of a parfor� The parfor
statement completes only when all the iterations have completed�

As a simple example� consider�

	

int A�N�

parfor �int i��
 i�N
 i���

A�i� � i

�

Here there are N parallel threads of control� Each element of the array
is assigned �by a di�erent thread of control� to the value of its index� The
parfor statement terminates only when all elements of the array have been

assigned their values� The �ow of control for this example is illustrated in
Figure ����

}

parfor(int i=0; i<N; i++) {

int A[N];

A[0] = 0; A[N-1] = N-1;A[1] = 1; . . .

Figure ���� Flow of Control in a Basic Parallel Loop

��

����� Sharing Data

The rule concerning sharing data that applies to parallel blocks applies to
parfor statements as well� The parallel threads of control in a parfor

statement �that is� the individual iterations of the loop� should not share
mutable data� For example�

	

int sum � �

parfor �int i��
 i�N
 i���

sum �� A�i�
 ��dangerous sharing
�

In this example� the mutable variable sum is modi�ed in all N iterations�
Recall from Section ����� that such sharing is dangerous�

The loop control variable used in a parfor statement is a special case�

This variable must be declared in the parfor statement itself� as is seen
in the preceding two examples� Each iteration is then considered to have
its own const copy of this loop control variable� The loop control variable
cannot be modi�ed within the body of a parfor�

����� Loop Unraveling

The conversion of the loop control variable to a constant value within each
iteration permits unraveling of the loop without executing the body of any

iteration� After the initialization of the loop control variable and the test
of the loop condition� execution of the body of the �rst iteration can begin�
but so can the increment of the loop control variable� followed by the test

of the loop condition� The �ow of control for a generic parfor statement is
represented in Figure ����

Notice that� as in a parallel block� nothing can be said about the order
of execution of the individual iterations� There is no guarantee that the �rst

iteration will even begin before any other iteration�
The semantics of loop unraveling are therefore de�ned in terms of a se�

quential repetition of condition test evaluation then loop control variable
increment� Though the generality of C and C�� permit these operations

to be arbitrarily complicated and hence require sequential evaluation� a par

ticular implementation of CC�� may do better in certain instances� For
example� it is not di�cult to envision a compiler that detects the common

loop format

��

body N-1

body 2

body 1

termination;

increment;

test;

increment;

test;

increment;

test;

initialize;

test;

.
.
....

Figure ���� Flow of Control in a Parallel Loop

��

parfor �int i��
 i�N
 i���

and is able to �atten the creation of the N parallel threads of control� Thus�
the linear complexity of the semantic de�nition of parfor does not neces

sarily imply a linear component in the performance of parfor in all cases�

����� Pitfalls

�� The loop control variable must be declared in the parfor statement�

Variables that come from a higher scope cannot be used as loop control
variables in a parallel loop� The following example is a compile
time
error�

	

int i

parfor �i��
 i�N
 i��� ��ERROR
	 ��� �

�

�� The �sequential� body of a parfor represents a nested level of scoping
within the parallel composition� Declarations are therefore permitted

at this level�

parfor �int i��
 i�N
 i��� 	

int x y � i��

x � f��

g�xy�

�

�� Nesting sequential loops within parallel loops must be done with care�
Consider the following sequential code�

	

int ij

for �i��
 i�N
 i���

for �j��
 j�N
 j���

	 ��� �

�

��

The following parallelization of this code is incorrect�

	

int j

parfor �int i��
 i�N
 i���

for �j��
 j�N
 j��� ��Error� j is a shared mutable
	 ��� �

�

This code is incorrect because the mutable variable j is shared be

tween the concurrently executing iterations of the parallel loop� All
sequential loops nested within a parallel loop should declare their loop

control variables�

� In general� the creation and deletion of parallel threads of control can
be a relatively expensive operation� If the amount of computation
performed by each iteration is small� such a program could exhibit
signi�cant performance degradation� This cost puts a practical limi

tation on the number of iterations composed in parallel by a parfor

statement�

�� No gotos into� out of� or between iterations of a parfor are permitted�
No break� continue� goto� or return statements are permitted at the

parfor level of scope�

The current implementation restrictions are the same as those for parallel

blocks �see Section �������

����� Examples

In this section we give some complete examples that can be compiled and

executed� These examples illustrate the use of the parfor statement�

Array Initialization This program initializes the entries of a �oat
valued
array�

�include �iostream	h�

const int N � ��

��

float f �float i�

�

��evaluate polynomial �xxx�xx�	x�� at x�i
return ��i�i�i � $�i�i � ��i � �

�

int main��

�

��makes A�i� � f�i� and then outputs A�i�
float A�N�

parfor �int i��
 i�N
 i���

A�i� � f��float�i�

��implicit barrier

for �int j��
 j�N
 j���

cout �� �A�� �� j �� �� is � �� A�j� �� endl

return �

�

Each element of the array A�� is evaluated and assigned a value by a
di�erent thread of control� This is an instance of safe sharing of mutable

variables between concurrent threads of execution because each individual
element of the array A�� is a di�erent mutable variable� and single elements
are not shared between iterations of the parfor loop�

Scienti�c Mesh Computation This is a solution to the cellular automa

ton grid computation problem� A gradient function is evaluated iteratively
over a two dimensional grid of points� The initial boundary conditions are

given and each interior point computes its new value as a weighted average

of its old value and its neighbors� old values� This process is repeated until
convergence �or� in this case� until a �xed number of iterations have been
processed��

�include �iostream	h�

const int N � ��

float Mesh�N��N�

float compute�cell �int r� int c�

�

return ���Mesh�r��c� � Mesh�r����c� � Mesh�r����c�

� Mesh�r��c��� � Mesh�r��c������	�

�

��

void calculate �void�

�

float New�Mesh�N��N�

for �int iterate��
 iterate����
 iterate��� �

parfor �int row��
 row�N��
 row��� ��compute new mesh
parfor �int col��
 col�N��
 col���

New�Mesh�row��col� � compute�cell�row�col�

parfor �int newrow��
 newrow�N��
 newrow��� ��update old mesh
parfor �int newcol��
 newcol�N��
 newcol���

Mesh�newrow��newcol� � New�Mesh�newrow��newcol�

�

�

int main��

�

for �int i��
 i�N��
 i��� � ��initialize boundary of Mesh
Mesh����i� � i

Mesh�i���� � i

Mesh�N����i� � N���i

Mesh�i��N��� � N���i

�

for �i��
 i�N��
 i��� ��initialize interior of Mesh
for �int j��
 j�N��
 j���

Mesh�i��j� � �

calculate��

for �i��
 i�N
 i��� � ��display outcome
for �int j��
 j�N
 j���

cout �� Mesh�i��j� �� � t�

cout �� endl

�

return �

�

The computation is done in parallel for all N� points� Note that a par

ticular point�s old value may be used in as many as computations �i�e� for
each of its neighbors�� Because each computation requiring this old value

performs only a read operation� this is not an instance of dangerous shar

ing� The value that is computed is written to a new mesh� At the end of
the �rst two parfor statements� therefore� we know that this new mesh of

values has been completely �lled in with the new values� The second group
of parfor statements can then safely copy these values to the original mesh�
It is important to understand why no mutable variable is being both written
and read by parallel threads of control�

�

Clearly this is not a very e�cient solution to this problem� The cost
of copying the mesh of values at every iteration is high� One way to avoid

this cost is to maintain two arrays� M� and M�� On even iterations� the
M� stores the old value and the new values are written into M�� and vice
versa on the odd iterations� Also� the number of parallel threads of control
is excessive �as discussed in the �Pitfalls� section� ������ considering the

small amount of work to be performed by each one� It is reasonable to
expect a program in which each thread of control computes the values for a
collection of cells to be more e�cient� The following code incorporates this

optimization�

�include �iostream	h�

��N�����������size of grid �N by N�
��T�����������number of concurrent processes� each working
�� on an N by ��N�	�
T�	� slice �T must divide N�	�
�� and �N�	�
T �� 	
��HORIZON�����the event horizon for terminating iteration

�define N ��

�define T �

�define HORIZON ���

float Grid����T��N���N����T���

void initialize �void�

�

int i�j�k

for �i��
 i�T
 i��� ��initialize interior of Grids
for �j��
 j�N��
 j���

for �k��
 k��N����T��
 k���

Grid����i��j��k� � �

for �i��
 i�T
 i��� ��initialize boundary of Grids
for �k��
 k��N����T��
 k��� �

Grid����i�����k� � i��N����T�k

Grid����i��N����k� � i��N����T�k�N���N��

�

for �i��
 i�N
 i��� �

Grid�������i���� � i

Grid����T����i���N����T��� � i�N��

�

�

��

float compute �int l� int s� int r� int c�

�

return ���Grid�l��s��r��c� � Grid�l��s��r����c� � Grid�l��s��r����c�

� Grid�l��s��r��c��� � Grid�l��s��r��c������	�

�

void exchange�boundaries �int l� int s�

�

int i

if �s�T���

for �i��
 i�N
 i���

Grid�l��s����i���� � Grid�l��s��i���N����T�

if �s���

for �i��
 i�N
 i���

Grid�l��s����i���N����T��� � Grid�l��s��i����

�

int main��

�

initialize��

for �int iterate��
 iterate�HORIZON
 iterate��� �

parfor �int slice��
 slice�T
 slice��� � ��for each slice
for �int row��
 row�N��
 row��� ��compute new Grid

for �int col��
 col��N����T��
 col���

Grid��iterate���#���slice��row��col� � compute�iterate#��slice�row�col�

�

parfor �int slice���
 slice��T
 slice���� � ��exchange boundaries
exchange�boundaries��iterate���#��slice��
 ��between neighbours

�

cout �� �exchange � �� iterate �� endl

�

for �int i��
 i�T
 i��� � ��display outcome
cout �� �Slice � �� i �� endl

cout �� ����������� �� endl

for �int j��
 j�N
 j��� �

for �int k��
 k��N����T��
 k���

cout �� Grid�HORIZON#���i��j��k� �� � t�

cout �� endl

�

cout �� endl

�

return �

�

��

Also� the synchronization at the end of each iteration is excessive� The
value of a particular cell in the mesh can a�ect the next values of only its

neighbors� Thus� there is no need for a cell to synchronize with any cells
apart from its immediate neighbors� We will discuss how such synchroniza

tion schemes can be constructed in Chapter �

��� Unstructured Parallelism� spawn

����� Introduction

A �nal construct for creating parallel threads of execution is spawn� Parallel
blocks and parfor statements have the nice property that a block terminates

only when all their components terminate� They are the parallel equivalent
of structured control �ow statements in C and C��� The spawn statement is
used to create a completely independent thread of control that executes in a
concurrent �or possibly a fairly interleaved� manner with the thread that ex

ecutes the spawn� Unlike the structured parallel statements� no parent
child

relationship exists between the spawned thread and the spawning thread�
There is no barrier or any form of implicit synchronization between the two�

either at their beginning or at their termination�
Only functions can be spawned� A spawned function cannot return a

value� Thus� spawn is similar in functionality to the thread creation facilities
provided in many thread libraries�

The syntax for this statement is�

spawn f��

This unstructured parallelism is analogous to unstructured sequential

code� with jumps and breaks in execution� Structured concurrency can be
built on top of spawn� but this requires care and e�ort on the part of the
programmer� The spawn statement should be used with care�

����� Argument Copying

Spawn guarantees that the arguments to the function being spawned are
copied before the spawning thread continues to the next instruction� Thus�

the following code has the expected e�ect�

for �i��
 i�N
 i���

spawn f�i�

�	

The argument to f�� is copied before the next instruction executes
�which will increment i�� Thus� at the end of this sequential for loop� there

are possibly N�� concurrent threads of control� the original thread and the
N threads spawned in the loop� Each of the N instances of the function f��

has a distinct value for its integer argument� We can say nothing� however�
about when each of the instances of f�� will begin or terminate execution�

either with respect to each other or with respect to the spawning thread�
For consistency with the C and C�� language de�nitions� the order of

argument evaluation for the spawned function is not de�ned� but all side

e�ects are guaranteed to occur before the spawned function begins execution�
Consider the following example�

spawn f�i�� �i�

We do not know when f�� will begin execution� but when it does it will
have a pointer to the incremented value of i �unless of course the value of i

has been modi�ed� see Section ������

����� Unstructured Termination

Because the termination of a spawned thread is not synchronized with the

spawning thread� it is an error �compile
time checked� to spawn a function
that returns a value� All spawned functions must be void functions�

Again� because there is no synchronization between spawned and spawn

ing threads� care must be taken that main�� does not terminate before any
of the spawned threads� The following example illustrates the problem�

void f�int i� 	����

int main��

	

spawn f���

return �

�

The end of a CC�� program is de�ned to occur �as with C and C��� at
the termination of main��� Thus� the program in the above example could
terminate before f�� begins execution� Such behavior is almost certainly a
programming error�

��

The lack of implicit synchronization with spawn transfers responsibility
for synchronization to the programmer� Barriers� or any other form of syn

chronized behavior� must be explicitly programmed� We will return to this
question once we have introduced the synchronization mechanism provided
by CC�� �Chapter ��

����� Sharing Data

The same rules that apply to sharing mutable variables in parallel blocks

and parfor apply to spawn as well� Usually� the pass
by
value semantics of
function calls in C and C�� prevents such sharing�

	

int i � �

spawn incr�i�

i��

spawn incr�i�

�

There is no dangerous sharing of variables here because each instance of
incr�� has its own copy of the value of i�

However� care must be taken when pointers �or C�� references� are used
in function arguments� This can lead to inadvertent� dangerous sharing of
mutable variables�

	

int a � �

spawn f��a�
 ��DANGER� possible sharing of mutable a
if �a���� 	����

�

��end of a�s scope� so spawned thread could reference garbage

Even if a is not explicitly modi�ed by either f�� or the spawning thread�
this example illustrates another possible danger� The scope of the variable

a is de�ned in the spawning thread� Without an explicitly programmed
barrier� the variable a could reach the end of its scope and be implicitly
destroyed in the spawning thread� leaving f�� with an invalid pointer�

����� Pitfalls

Some potential problems to keep in mind when using spawn�

��

�� Spawned functions cannot return a value�

�� Explicit synchronization points must be programmed when using spawned

functions� otherwise there is no guarantee they will begin execution

before the end of main�� is encountered� How to construct such syn

chronization points is discussed in Chapter �

�� Great care must be exercised when passing pointers �or C�� refer

ences� to spawned functions� as this often leads to dangerous sharing

of mutable variables�

� To understand complicated spawning expressions� the precedence in
the order of evaluation in a function call must be understood� The
function call is spawned� not the evaluation of any pre�x operators�

For example�

spawn f��g����h��

First the pointer f is evaluated� then the function g�� is executed� and
then the result is used to determine which function h�� is spawned�
The spawning occurs only at the highest level function call�

����� Examples

Because no mechanism for synchronization with spawned threads of control
has yet been introduced� we postpone the presentation of any examples of

this construct until Chapter �

��

Chapter �

Atomicity

��� Introduction

In this chapter we introduce the concept of atomicity� Because this construct

is related to the notion of classes and member functions� some familiarity
with the object
oriented aspects of C��is assumed�

In Chapter � the concept of threads of control executing in a paral

lel manner was introduced� A rule was presented for avoiding dangerous

behavior by not sharing mutable variables between concurrent threads of

execution� Sometimes� however� this sharing is necessary� Consider� for ex

ample� an implementation of a queue class� The following implementation
is typical�

class Node 	

public�

int item

Node� next

Node �int i� 	 item � i
 �

�

��

class Queue 	

private�

Node� head

Node� tail

public�

Queue �void� 	

head � NULL

tail � NULL

�

void enqueue �int i� 	

Node� add � new Node�i�

if �head��NULL� 	

head � add

tail � add

�

else 	

tail��next � add

tail � add

�

�

int dequeue �void� 	

int ret�val � �

if �head �� NULL� 	

ret�val � head��item

old�head � head

head � head��next

if �head �� NULL�

tail � NULL

delete old�head

�

return ret�val

�

�

Now consider a Queue that can be used by an arbitrary and varying

number of threads of control� all executing in parallel� Obviously this can

lead to trouble if one thread of control accesses the queue by interrupt

��

ing another thread that was already accessing the queue� We would like
a mechanism to specify that once a particular member function has begun

executing� no other member functions �from a particular set� of that object
will begin executing� This mechanism is provided in CC�� by the key

word atomic� Atomicity is a mechanism for controlling the granularity of
permitted interleavings of parallel threads of control�

Member functions �private� public� or protected� of an object can be de

clared atomic� This declaration speci�es that the actions of such a function
will not be interleaved with the actions of any other atomic function of the

same object� In our queue example� both the enqueue�� and the dequeue��
operations would be declared atomic�

class Queue 	

���

atomic void enqueue �int i� 	����

atomic int dequeue �void� 	����

�

As a simpler example� consider the following program�

class Value 	

private�

int x

public�

atomic void assign �int i�

	 x � i
 �

�

void f�void�

	

Value v

par 	

v�assign���

v�assign���

�

��v�x is now either � or �
�

��

Two threads of control are created in the parallel block� each executing an
atomic function of the object v� Because atomic functions that are members

of the same object cannot execute concurrently� one atomic function executes
�rst and is then sequentially followed by the execution of the second atomic
function� The nondeterminism of the interleaving of actions within a parallel
block is re�ected in the fact that we do not know which atomic function will

execute �rst� But once one atomic function begins execution� it will not be
interrupted by the other atomic function� The two possibilities for the �ow
of control in this example are illustrated in Figure ����

par {

Value v;

}

par {

Value v;

}

v.assign(1);

v.assign(2); v.assign(1);

v.assign(2);or

Figure ���� Flow of Control with Atomic Functions

Atomic functions should always be used to access mutable variables that
are shared between concurrent threads of control�

��� Controlled Nondeterminism

In Chapter � it was stressed that arbitrary sharing of mutable variables be

tween concurrent threads of control is a dangerous practice� This is because

the manner in which the operations on these shared mutables are interleaved

�

is unknown� Therefore nothing can be said about the outcome of such a pro

gram� Atomicity gives us a way to control this interleaving� and hence to

control the nondeterminism of parallel composition� The example presented
in Section ���� for instance� results in v�x having the value � or the value
�� Without an atomic access to v�x� however� this program would result in
v�x having an arbitrary value�

Atomic functions can be used to write deterministic programs� despite
the nondeterminism inherent in concurrent access to shared mutables� For
example� consider �nding the minimum element of an array�

class Min 	

private�

int current�min

public�

Min�int i�

	 current�min � i
 �

atomic void check �int i�

	 if �i�current�min� current�min � i
 �

�

int main��

	

int A�N�

���

Min m�A����

parfor �int i��
 i�N
 i���

m�check�A�i��

���

�

Because of the nature of parfor� we do not know the order in which each
of the N
� parallel threads of control initiates execution of m�check�A�i���
However� once one thread begins execution of this m�check�� function� no
other thread is permitted to begin execution of any other atomic member

functions of object m �including� of course� other instances of m�check����
Figure ��� represents one possible sequence of execution for this program�

Thus� the order in which m�current min is updated is nondeterministic�

However� the nature of the application guarantees that at the end of the
parfor statement� m�current min will have been compared �and updated�

��

1 346A =

}

m.check(A[2]);

current_min = 1;

m.check(A[1]);

m.check(A[3]);

current_min = 3;

parfor(int i=1; i<N; i++) {

current_min = 6;

Min m(A[0]);

Figure ���� Possible Sequence of Execution for Finding Minimum Element

��

to the minimum element of array A��� Hence� given the input array A���
the intermediate values taken on by m�current min are unknown� but the

�nal value is �xed�
It is important to notice how this atomic function represents a signi�cant

bottleneck in the computation of this minimum element� Because only a
single thread of control is allowed to be executing an atomic member function

of m at any given time� the execution is essentially sequential� This suggests
that atomic functions should be kept very small�

��� Deadlock

The execution of an atomic function represents a signi�cant control over the

rest of the computation� No other threads of control will be permitted to
begin execution of an atomic function on the same object as the executing
atomic function� until that executing atomic function terminates� Thus� it
is possible to write an atomic function that prevents the rest of the com

putation from proceeding by preventing any other atomic functions from
executing� This is an example of deadlock�

Fortunately� there is a small collection of simple rules for avoiding dead

lock� The following rules guarantee that an atomic function will not cause

a computation to deadlock�

�� atomic functions must terminate�

�� atomic functions must not suspend �suspension is discussed in Chap

ter ��

�� atomic functions must not contain parallel blocks or parfor statements�

� atomic functions must not call other functions�

Notice that the above collection of rules is a stronger set of requirements

than strictly required� It is possible to write a program that violates one
or more of these rules and yet will not deadlock� Following these rules�
however� guarantees that no atomic function will cause a deadlock�

Let us examine each of these requirements in turn�
The �rst two rules prevent a single atomic function from monopolizing

the computation by preventing any other atomic function from executing�
It is possible� however� to write a program with a nonterminating atomic

function which is deadlock
free� For example� if no other threads of control

�	

require atomic access to the same object as the nonterminating atomic func

tion� no deadlock will occur� Of course� in this case� declaring the function

atomic has no e�ect�
The third rule prevents deadlock at a nested level of scope within an

atomic function� Certainly if an atomic function does not contain a parallel
block or a parfor� no deadlock between concurrent threads of control within

the atomic function is possible� Again� however� it is possible to write pro

grams that violate this rule and yet will not result in deadlock� For example�
an atomic function that contains a parallel block that can be guaranteed not

to deadlock is perfectly safe�
The last rule prevents an atomic function from not terminating due

to a deadlock in a function called by the atomic function� Clearly if no
functions are called from within an atomic function� such deadlock cannot

occur� Again this requirement is too strong� and it is possible to write atomic
functions that do call member functions and yet will never deadlock�

Though it is possible to write deadlock
free programs that violate the
rules given above� this programming style is strongly discouraged� Such

programs can easily contain subtle errors that� because of various timing or
dependency issues� may go undetected for a long time�

As a general rule� atomic functions should be used sparingly� and then

only to do the most fundamental operations�

��� Inheritance

Atomicity of member functions is preserved under inheritance� Base classes
and derived classes can contain atomic member functions� The atomic mem

bers of an object of a derived class behave the same as for a simple class

without inheritance� That is� regardless of whether the atomic member is
declared in the base class or the derived class� it is an atomic member of the
derived class� For example�

class Base 	

protected�

atomic void f�int� 	����

�

��

class Derived � private Base 	

public�

atomic int g�void� 	����

void h�int i�

	

f�i�
 ��executes atomically with respect to g�

���

�

�

In an object of type Derived� instances of g�� and f�� execute atomi

cally�

��� Pitfalls

The following issues should be kept in mind when using atomic functions�

�� Atomic functions should be used sparingly� This is because of the

high performance cost associated with the decrease in parallelism they
represent� Many applications will have no need for atomic functions�

�� When it is necessary to use an atomic function� encapsulate only what
is absolutely necessary within the atomic function� These functions
should be small and simple�

�� Because atomic functions provide a means to manipulate shared mu

table variables� it is easy to fall into the trap of a busy wait similar

to the fair interleaving pitfall described in Section ������ For example�
consider�

class Trouble 	

private�

int x

public�

atomic void assign �int i�

	 x � i
 �

atomic int check �void�

	 return x
 �

�

��

int main��

	

Trouble t

t�assign���

par 	

t�assign���

while �t�check������ 	�

�

���

�

Though the language guarantees that eventually operations from both
threads of control in the parallel block will get a chance to execute�
there is no guarantee about how soon an operation from a particular

thread �say the �rst one� which assigns � to t�x� will be chosen� Thus�
we cannot be guaranteed to observe the termination of this parallel

block�

� Because atomic functions are associated with an object� static mem

bers cannot be declared atomic� Similarly� functions at global scope

�i�e� non
member functions� cannot be declared atomic�

�� The actions within an atomic function can be interleaved with actions
from nonatomic members of the same object� Thus� it is important
to protect not only the write operations on mutable variables inside

atomic functions� but also the read operations� The following class�
for example� permits dangerous sharing�

class Protect 	

private�

int x

public�

atomic void write �int i� 	 x � i
 �

int read �void� 	 return x
 �

�

To rectify the problem� the member function read�� should be de

clared atomic as well� �Of course� there is no problem if the class
is used in a manner that guarantees that no instance of write�� is
composed in parallel with any instances of read����

�

��� Examples

In this section we give some complete examples that can be compiled and

executed� These examples illustrate the use of atomic member functions�

Hello World This program is a variation on the traditional greeting pro

gram presented as the �rst example of Chapter ��

�include �iostream	h�

�include �string	h�

class Greeting �

private

char� s

public

Greeting �void� � s � new char����
 �

atomic void append �char� add� � strcat�s�add�
 �

void display �void� � cout �� s �� endl
 �

�

int main��

�

Greeting g

par �

g	append��hello� ��

g	append��world��

�

g	display��

return �

�

This program displays one of the two following messages� �hello world�

or �worldhello �� This message is built up by appending strings to the
private mutable variable g�s� These appends can be safely done in parallel

because the function is atomic� We do not know� however� which append
will be performed �rst� The two possible interleavings of these append oper

ations result in two di�erent messages which can be displayed� Notice that

display�� is not atomic� This is not a problem because the program does
not compose any operations in parallel with display���

Finding the Minimum Element This program �nds the minimum ele

ment of a statically de�ned integer array�

�

�include �iostream	h�

const int N � �

int A�N� � ��� �� �� �� �� �� !� "�

class Min �

private

int current�min

public

Min�int i�

�

current�min � i

cout �� �minimum initialized at � �� current�min �� endl

�

atomic void check �int i�

�

cout �� �comparing � �� i �� �			�

if �i�current�min� current�min � i

cout �� �minimum so far is � �� current�min �� endl

�

int value �void�

�

return current�min

�

�

int main��

�

Min m�A����

parfor �int i��
 i�N
 i���

m	check�A�i��

return m	value��

�

Each element of the array is compared to the smallest value seen so far�
If the element is smaller� then the smallest value seen so far is updated� By
the nature of a parfor loop� we do not know the order in which elements will

be compared using class m� The atomicity of the member check��� however�
guarantees that there will be no interference between concurrent threads
operating on m� Thus� the mutable variable m�current min is protected�
and the result of the program is deterministically the smallest element of

the array�

�

Multiple�Reader Multiple�Writer Linked List This example de�nes
a class that implements a linked list of integers� This class can be shared

by multiple processes adding elements to the list �writers� and multiple
processes making removals from the list �readers��

�include �iostream	h�

class List

class ListNode �

private

int data

ListNode� next

ListNode �int d�

�

data � d

next � NULL

�

friend class List

�

class List �

private

ListNode� head

ListNode� tail

public

List �void�

�

head � new ListNode���

tail � head

�

atomic void append �int a�

�

ListNode� addition � new ListNode�a�

tail��next � addition

tail � addition

�

�

atomic int remove �int� item�

�

if �head��tail�

return �

else �

ListNode� old�head � head

head � head��next

delete old�head

item � head��data

return �

�

�

�

List L

void producer �int id� int n�

�

for �int i��
 i�n
 i���

L	append�id�n�i�

�

int consumer �int id� int n�

�

int item

int sum � �

for �int i��
 i�n
 i���

if �L	remove�item� �� ��

sum �� item

return sum

�

int main��

�

par �

producer������

producer������

�

int sum�� sum�

par �

sum� � consumer������

sum� � consumer������

�

cout �� �Sum of list received by consumer � � �� sum� �� endl

cout �� �Sum of list received by consumer � � �� sum� �� endl

return �

�

Because modi�cations �appends and removals� to this list are atomic� an
object of this list class can be shared between multiple threads of control�

Instances of an append�� operation and a remove�� operation are guaran

teed not to interfere with each other� or with other instances of the same
operation� Thus� in the examples� two producers can safely be composed
in parallel� as can two consumers� The result of the composition of these

two producers is a linked list containing the integers � to � �in that order�
interleaved with the integers �� to ��� The language de�nition says noth

ing about how these two sequences will be interleaved �though a particular

implementation may have a speci�c strategy��

�

Chapter �

Synchronization

��� Introduction

Until now� we have discussed how parallel threads of execution can be cre

ated �with par� parfor� and spawn� and how the granularity of the inter

leaving of actions in di�erent threads of execution can be controlled �with

atomic�� The only mechanism for synchronization between concurrently
executing threads of control has been the implicit barrier at the end of a

parallel block and at the end of a parfor statement� In this chapter� we

introduce a mechanism for programming arbitrary synchronization behavior
between concurrent threads of control�

The sharing of a mutable variable �unprotected by atomic access� be

tween actions composed in parallel is dangerous when at least one of the
actions modi�es the value of this variable� By contrast� it is always safe
to share constants �i�e� C or C�� const variables�� In this spirit� CC��

de�nes a new type of variable� a single
assignment variable �or delayed ini

tialization constant�� denoted by the keyword sync� Like a constant� the
value of a de�ned single
assignment variable cannot be modi�ed� Attempt

ing to modify the value of a de�ned single
assignment variable is a run
time

error� Unlike a constant� however� a single
assignment variable need not be
de�ned when it is declared� The de�nition can be postponed until some
later point� Thus� a single
assignment variable can be in one of two states�
unde�ned �as it is initially� or de�ned� Once de�ned� there is no di�erence

between a single
assignment variable and a constant�
Here are some examples of declarations of single
assignment variables�

�

sync int a
 ��sync integer
char �sync b
 ��sync pointer to a mutable character

sync char� c
 ��mutable pointer to a sync character
sync float D�N�
 ��array of sync �oats
sync int �sync e
 ��sync pointer to a sync integer

The keyword sync is analogous to the keyword const� It can be used any

where that const can be used� Any regular C or C�� type can be declared
to be single
assignment �see Section �	 for an exception��

Single
assignment variables provide a means for synchronization because
of the following rule�

If a thread of control attempts to read a single�assignment vari�
able that has not yet been de�ned� that thread suspends execution

until that single�assignment variable has been de�ned�

Thus� threads of control that share access to a single
assignment variable
can use that variable as a synchronization element�

��� Data Dependencies and Flow of Control

Consider the following code�

	

sync int abcd

par 	

a � b�c

b � �

c � �

d � a�c

�

��at this point� a��� b��� c��� d��
�

The data dependencies in this calculation control the �ow of control�
The �rst thread of execution� that de�nes the single
assignment integer a�

cannot proceed until both b and c have been de�ned� The second and third
threads of control can proceed immediately with the de�nition of b and c

respectively� Once a and c have been de�ned� then the fourth thread of
control can de�ne d� Notice that in this example� d could have been a

	

mutable integer� since it is not shared between any threads� The �ow of
control for this code is schematically represented in Figure ���

}

c = 3;

a = b+c;

b = 2;

par {

sync int a,b,c,d;

d = a+c;

Figure ��� E�ect of Single
Assignment Variables on Flow of Control

As another example� consider the problem of calculating all the powers
of � from � to N
�� We use the fact that the ith power of � can be calculated
as � � �i���

	

sync int P�N�

P��� � �

parfor �int i��
 i�N
 i���

P�i� � ��P�i���

�

Recall that we do not know in what order or in what interleaving the

threads of execution created by a parfor statement will be executed� The

�

semantics of single
assignment variables� however� guarantee that a value
will not be assigned to P�i� until a value has been assigned to P�i���� The

data dependencies for this program are represented in Figure ��� Notice how
the strict linear data dependency of this example constrains the execution
to essentially a sequential one�

parfor(int i=1; i<N; i++) {

}

.
.
.

sync int pow[N];

P[0] = 1;

P[1] = 2*P[0];

P[2] = 2*P[1];

P[N-1] = 2*P[N-2];

Figure ��� Linear Data Dependency for Calculating Powers of �

It is also worthwhile mentioning that this example can be simply rewrit

ten as a correct sequential program by replacing the parfor statement with
a for statement� Of course� this need not be the case in general� For ex

ample� if the bounds for the loop are reversed� so that i begins with a value

N�� and is decremented to �� the corresponding sequential program would
no longer be correct� This correspondence between sequential and paral

lel programs suggests methods of systematic parallelization of certain kinds
of sequential code structures� It also suggests a deterministic debugging

methodology for parallel CC�� programs�

�

With a slight modi�cation to the previous example� the amount of par

allelism possible can be dramatically improved� Consider�

sync int P�N�

P��� � �

P��� � �

parfor �int i��
 i�N
 i�i���

par 	

P�i� � P�i��� � P�i���

P�i��� � P�i��� � P�i��� � �

�

This program makes use of the fact that the ith power of � can be calcu

lated as �i����i�� when i is even� and ��i��������i������� when i is odd� This

modi�es the data dependencies in the computation from a linear structure
�as seen in Figure ��� to a tree structure� represented in Figure ���

Again notice that this program can be simply rewritten as a correct
sequential program by replacing the parfor statement with a for statement�

and replacing the parallel block with a sequential one�

��� Single�Assignment Arguments and Return Val�

ues

Single
assignment variables can be used as function arguments �again� in
exactly the same way that constant variables can be used�� The pass
by

value semantics of function invocation in C and C�� guarantees that the

single
assignment variable can be copied �and hence has been de�ned� before

the function begins execution� For example�

void f�sync int i� ��Suspends here until i is de�ned
	

�� At this point� we can assert that i has been de�ned
���

�

Similarly� a function can return a single
assignment type� This is not
generally a useful thing� however� since an individual statement is evaluated
sequentially in CC��� For example� to evaluate the expression a���b���

�rst the function a�� is executed� then the function b�� is executed� then

��

p
a
r
f
o
r
(
i
n
t

i
=
2
;

i
<
N
;

i
=
i
+
2
)

{

s
y
n
c

i
n
t

p
o
w
[
N
]
;

P
[
0
]

=

1
;

P
[
1
]

=

2
;

.
.
.

P
[
2
]

=

P
[
1
]
*
P
[
1
]
;

P
[
3
]

=

P
[
1
]
*
P
[
1
]
*
2
;

P
[
4
]

=

P
[
2
]
*
P
[
2
]
;

P
[
5
]

=

P
[
2
]
*
P
[
2
]
*
2
;

P
[
6
]

=

P
[
3
]
*
P
[
3
]
;

P
[
7
]

=

P
[
3
]
*
P
[
3
]
*
2
;

}

Figure ��� Binary Tree Data Dependency for Calculating Powers of �

��

their result is summed� No potential parallelism between these two functions
is exploited� so no synchronization in the form of single
assignment variables

is required� Because functions that are spawned must be void functions� a
single
assignment return type is not useful in that case either� Thus� it is
always possible to replace a function that returns a single
assignment type
with one that returns a mutable type� without altering the semantic meaning

of the program�

��� Type Conversions

The single
assignment nature of a sync variable cannot be cast away� neither
implicitly nor explicitly� This guarantees that a single
assignment variable

cannot be misused �that is� modi�ed� in a thread of control� For example�
consider the following examples�

	

void f �int ��

sync int a

int b

b � a
 ��OK

b � �int�a
 ��OK

�int�a � �
 ��ERROR
f��int ���a�
 ��ERROR

�

��� Synchronizing Spawned Functions

Synchronization for threads of control created with the spawn command
must be explicitly programmed� This can be done using single
assignment
variables �in conjunction with pointers or C�� reference arguments�� For

example� a barrier between a spawning thread of control and the function
that it spawns might be programmed as follows�

��

void independent �sync int� b� 	

���

�b � �

�

int main��

	

sync int Barrier

spawn independent��Barrier�

���

if �Barrier �� �� ��spawning thread waits here until
��function independent� has set sync value

	
�

���

�

It is important to recall that the semantics of the spawn statement re

quires that all the function arguments be evaluated prior to the function
beginning execution� This means that if one of the arguments is a single

assignment variable� the spawned function will not begin execution until

that variable has been de�ned� Consider the following code�

void f �sync int� p sync int n�

	 �p � n
 �

int main��

	

sync int A��� B���

A��� � �

B��� � �

par 	

f��A���A����
 ��OK
f��A���A����

�

spawn f��B���B����
 ��program suspends here forever
spawn f��B���B����

���

�

��

The parallel block executes correctly because initialization �e�g� argu

ment evaluation� and execution of both instances of the function f�� are

composed in parallel with each other� The spawn statements following this
parallel block� however� must be executed in strict sequential order� Com

pleting the �rst spawn statement means evaluating the arguments to the
function f�� � that is� the address of B��� and the value of B���� Because

B��� is an unde�ned single
assignment variable� the spawn statement itself
suspends� Execution does not proceed to the next statement�

The sharing of references and pointers to single
assignment variables by

concurrent threads of execution can be extremely useful� By contrast� the
sharing of references and pointers to mutables by concurrent threads of ex

ecution can be dangerous� Because the spawned function is composed in
parallel with the spawning function� pass
by
reference semantics for muta

ble variables can lead to dangerous sharing between concurrent threads of
control �see Chapter �� Section ������

��� Memory Management

The lifetime of a single
assignment object obeys the usual C�� scoping con

ventions� At the end of the block in which it is declared� a single
assignment

variable goes out of scope� and is destroyed� In this case� the memory man

agement is handled implicitly�

To create a single
assignment variable whose lifetime extends beyond the

scope of its declaration� dynamic memory allocation can be used� Again�
such allocation is completely consistent with how the allocation would be
done for a constant value in C��� using the new operator� For example�

	

sync int� a � new sync int

���

�a � �

�

The declaration above creates a pointer to an unde�ned single
assignment
integer� The assignment later de�nes the single
assignment integer refer

enced by a to be the value ��

�

When dynamic memory allocation is used� C�� makes it the program

mer�s responsibility to deallocate this memory� freeing it for future use� This

applies to single
assignment variables as well� Thus� corresponding to the
declarations above� we might expect to see�

delete a

��	 Pitfalls

Keeping the following points in mind when using single
assignment variables

will help to avoid many common mistakes�

�� Single
assignment variables can be read by other threads of control

immediately after their de�nition has terminated� For example� a
structure that contains some single
assignment �elds and some mu

table �elds must usually be initialized such that the mutable �elds
are de�ned before the single
assignment �elds� For an example of the

subtlety of this pitfall� see the second example in Section �� of this
chapter�

In addition� the present implementation of the compiler places the fol

lowing restrictions on the single
assignment construct�

�� A user
de�ned class cannot be declared to be single
assignment� The
sync construct can only be applied to fundamental types �that could�
in turn� be part of a user
de�ned class��

��� Examples

In this section we present several examples that can be compiled and exe

cuted and that illustrate the use of single
assignment variables �in conjunc

tion with some of the constructs seen in previous chapters��

All�Pairs Shortest Paths This program calculates the length of the
shortest path between all pairs of vertices in a directed� acyclic graph� The

graph is de�ned statically by its adjacency matrix�

��

�include �iostream	h�

const int N � �

int min �int a� int b�

�

if �a � b� return a

else return b

�

sync int path�lengths�N����N��N�

int edges�N��N� � � �� �� �� ��

�� �� ����� ��

�� ����� �� ��

�� �� �� � �

void initialize�paths �void�

�

for �int i��
 i�N
 i���

for �int j��
 j�N
 j���

path�lengths����i��j� � edges�i��j�

�

void solve �void�

�

for �int k��
 k��N
 k���

parfor �int i��
 i�N
 i���

parfor �int j��
 j�N
 j���

path�lengths�k��i��j� � min �path�lengths�k����i��j��

path�lengths�k����i��k��� � path�lengths�k����k����j��

�

void display�result �void�

�

cout �� �All�pairs distance matrix is� �� endl

for �int i��
 i�N
 i��� �

for �int j��
 j�N
 j��� �

cout �� path�lengths�N��i��j� �� � t�

�

cout �� endl

�

�

��

int main��

�

initialize�paths��

solve��

display�result��

return �

�

This example uses the dynamic programming recurrence relation

�i� j� k � �� � i� j � N � �� � �� � k � N� �

Dk
i�j � min�Dk��

i�j � Dk��
i�k�� �Dk��

k���j�

where Dk
i�j is the minimum distance between vertices i and j� using only

vertices numbered strictly less than k as intermediate vertices�
In this example� all N� calculations are composed in parallel with each

other� If any of the three values required to calculate path lengths�k��i��j�

are not yet de�ned� that thread of control suspends� Thus� the order of eval

uation of this three
dimensional array is controlled by the data dependencies
of each element of the array on the previous elements� Again� it is important
to note that the small size of each task to be performed in parallel relative

to the number of these tasks makes this program extremely ine�cient� The
dominant cost here is the thread creation and termination time �as op

posed to the calculations performed� and thus we would expect to observe

a degradation in performance in any practical implementation� This exam

ple is meant only to illustrate the semantic meaning of single
assignment
variables and the functional style of programming they induce�

Synchronizing Single�Reader Single�Writer Stream This example
implements a single
reader� single
writer stream� Two operations are de�ned

on such a stream� an append and a removal� A removal from an empty
stream suspends until the stream is non
empty� Appends to the stream
never suspend�

�include �iostream	h�

class Stream

�	

class StreamNode �

private

int data

StreamNode �sync next

StreamNode �int d� � data � d
 �

friend class Stream

�

class Stream �

private

StreamNode� head

StreamNode� tail

public

Stream �void�

�

head � new StreamNode���

tail � head

�

void append �int a�

�

StreamNode� addition � new StreamNode�a�

tail��next � addition

tail � addition

�

int remove �void�

�

StreamNode� old�head � head

head � head��next

delete old�head

return head��data

�

�

Stream S

void producer �int n�

�

for �int i��
 i�n
 i��� �

cout �� ��appending � �� i �� ���

S	append�i�

�

�

��

void consumer �int n�

�

for �int i��
 i�n
 i���

cout �� �Consumer removes � �� S	remove�� �� endl

�

int main��

�

par �

producer����

consumer����

�

return �

�

The last StreamNode of a stream always has an unde�ned next �eld�
An empty stream is represented by a single StreamNode with an unde�ned
next pointer� See Figure ��

data

next

0
head

tail

head
0data

next

data

next

3

...

data

next

8

data

next

5

tail

?

An empty stream

?

A nonempty stream

Figure �� A Stream Implemented as a Linked List with Single
Assignment
Links

Appending an item means creating a new node with the appropriate
data� de�ning the next �eld of the last StreamNode� and modifying the
mutable tail member to point to this new node� Notice that because this

��

action is not atomic� this modi�cation of tail is unprotected� Hence con

current append�� operations are dangerous� and so this is a single
writer

stream� A multiple
writer class can be created by simply making append��

an atomic operation�
Removing an item requires reading the next �eld of the StreamNode

referenced by the mutable member head� If this �eld is not de�ned� the

removing thread of control suspends here� Once this �eld is de�ned� the
data contained in the StreamNode referenced by this next �eld is returned�
the �rst node is deleted� and the mutable head member is modi�ed to point

to this second node� Again� this modi�cation is unprotected� and so concur

rent remove�� operations are dangerous� Unlike the append�� operation�
however� this member cannot simply be made atomic to permit multiple
readers� This is because atomic functions must not suspend �recall Chap

ter �� Section �����
This example illustrates some of the complexity involved in implement

ing such synchronization classes that contain mutable members and will be
shared between concurrently executing threads of control� There are at least

two common errors that are avoided in the above implementation� Both
stem from the fact that if a thread of control is suspended on an unde�ned
single
assignment variable� that thread may resume execution immediately

once that single
assignment variable has been de�ned�

�� When adding a new StreamNode to the stream� the node must be

created and the data �eld initialized before the new node is linked on
to the stream� If the node is linked �rst� and then the data �lled in�
a suspended remove�� operation could resume execution immediately

when the next �eld of the previous node is de�ned and attempt to
access a garbage data �eld�

�� The �rst node can be deleted by a remove�� operation as soon as
the stream becomes non
empty� which occurs in the second line of

the append�� function� Thus� we must be careful not to access the
contents of this node in the last line of append��� The following code�
for example� is incorrect�

��

void append �int a� 	

StreamNode� addition � new StreamNode�a�

tail��next � addition

tail � tail��next
 ��ERROR� tail may point to a deleted node
�

If the stream was initially empty �so head and tail� point to the
same node�� then using the value tail��nextmay dereference deleted
memory� since at this point a remove�� operation may have deleted

the node referenced by head�

Fortunately� these issues of synchronization and interaction based on
shared objects can usually be encapsulated in a small collection of classes�
These classes can be rigorously analyzed and veri�ed and used whenever ap

propriate� For example� libraries that implement semaphores� monitors� and
a variety of message
passing channels have been implemented and veri�ed
here at Caltech�

��

Chapter �

Distributed Hello World

��� Introduction to Distributed Computing

An address space is the set of memory that can be accessed from a thread of

control� So far� all the concurrency we have created using par� parfor� and
spawn has been inside a single address space� Modulo the scoping bound

aries imposed by the C�� language� each thread of control has access to
the same memory� This means that communicating data from one thread

to another simply requires agreeing on which location in memory to place

the information� However� simultaneous access to data by multiple threads
is nondeterministic� We introduced atomic and sync to control this nonde

terminism�

We are now going to talk about distributing a computation over several
address spaces� Threads on separate address spaces no longer have access to
the same memory� Thus� communication of data from one address space to

another is required for two such threads to share data� This communication
is often quite time
consuming� However� we now need to be concerned only
with nondeterminism caused by interaction with other threads on the same
address space� rather than with all threads in the entire computation�

Because communication is now more expensive� deciding in which ad

dress space to place which pieces of data becomes important� Each thread
would like access to pieces of data it frequently uses to be inexpensive� i�e��
in the same address space� We would like to distribute the computation to

the available address spaces in such a way that each piece can inexpensively
access most of the data on which it depends�

In C�� objects� we group the data related to pieces of computation

��

�member functions� together� CC�� extends this idea with processor ob�
jects� Each processor object is a separate address space� We group related

pieces of data� and the parts of the computation that go with them� into
one processor object�

Naturally� we cannot always break the computation up such that each
piece can inexpensively access all the data on which it depends� In CC���

data that is expensive to access is distinguished from data that is inexpensive
to access� Pointers that reference data that is expensive to access �i�e�� on
another address space�processor object� are global pointers� while those that

reference inexpensively accessible data �i�e�� on the same processor object�
are local pointers�

Dereferencing a global pointer creates a communication to another pro

cessor object to fetch the value referenced� The speci�cs of this communica

tion are controlled through the CC�� construct of data transfer functions�
We will see processor objects� global pointers� and data transfer functions

in detail in the next � chapters� First we present a simple example of their
use�

��� Distributed Hello World

Let us modify the �Hello world� example presented in Chapter � to say hello
from a set of processor objects� We use three �les�

�� dist Greeter�h
�include �iostream�h�

global class Greeter 	 �� global identi�es a processor object type
public�

Greeter�� 	�

void say�hi �int id�

�

�� dist Hello�cc��
�include �stdlib�h�

�include �dist�Greeter�h�

��

�� argv
�� 	 � of Greetings desired integer�
�� argv
����argv
��argv
��� 	

�� machines on which processor objects should be located strings�
int main �int argc char�� argv�

	

int P � atoi�argv����
 �� P becomes � of processor objects to be created

parfor�int p��
 p�P
 p��� 	

Greeter �global G

proc�t placement � proc�t��dist�Greeter�out�argv���p��

�� placement of processor object is speci�ed by a de�nition�location� pair
G � new �placement� Greeter��

G��say�hi�p�

delete G

�

return �

�

�� dist Greeter�cc��
�include �dist�Greeter�h�

void Greeter��say�hi �int id�

	

cout �� �Hello World from Processor Object�� �� id �� endl

�

From our shell we compile two executables�

�cc�� dist�Greeter�cc�� �ptype�Greeter �o dist�Greeter�out

�cc�� dist�Hello�cc�� �o dist�Hello�out

We must now start PVM� a communication library that CC�� uses� Ba

sically this means invoking pvmd with a �le �the host�le� that lists the ma

chines we plan to use in our computation� The release notes for the CC��
compiler provide more detailed instructions for executing distributed CC��
computations than given here�

We execute

�pvmd hostfile

�

and then place pvmd in the background�
Finally we are ready� We run dist Hello�out� telling it how many

greetings we want� and a corresponding list of locations from which we want
greetings� For instance� here at Caltech we might write

�dist�Hello�out � fides hebe fides

As described in the section of the release notes entitled �Running a Dis

tributed CC�� Program�� the standard output from dist Hello�out will
be piped to a �le in the tmp directory of the machine you started pvmd from�

Let us examine the parts of this program that are not standard C���

�� The keyword global qualifying the class declaration on line �� This
identi�es Greeter as a processor object type� Each object of type
Greeter will be a separate address space� Note that other than the

word global� class Greeter looks like any other class� processor
objects have constructors� destructors� private� public and protected
members� and can be inherited� Processor objects are explained in
Chapter 	�

�� The keyword global qualifying the pointer declaration on line ���
This identi�es G as a global pointer� A global pointer can reference

memory in other processor objects� and thus is the basic mechanism for
communication in CC��� Global pointers are explained in Chapter ��

�� The object placement of type proc t on line �	� proc t is an implementation

de�ned type that speci�es placement of a processor object� In our
implementation of CC��� proc t contains two �elds� an executable

name and a machine name� The executable name states where the

de�nition of the processor object can be found� and the machine name
states on what machine that processor object should be created� We
compiled the de�nition of type Greeter into dist Greeter�out� and
we take the � � pth argument in array argv as the machine name�

� The allocation G�new �placement� Greeter�� on line ��� This cre

ates an object of type Greeter� placed according to the proc t placement�
Like all calls to new� a pointer to the newly created object is returned�
Since that object is a processor object� by de�nition it resides in an

other address space� and therefore G must be a global pointer�

��

�� The function call G��say hi�p� on line ��� This invokes the mem

ber function say hi on the object referenced by G� Since G references

another processor object� the function will be executed on that proces

sor object� This is known as a remote procedure call� or RPC� say hi

takes an argument� which is transferred to the processor object where
the function is to execute� If say hi had a return type� the value re

turned would be transferred back� The mechanism for controlling how
data is transferred is explained in Chapter ��

�� The deallocation delete G on line ��� This destroys the processor
object referenced by G� All variables inside the processor object are

destroyed� and any member functions of the processor object currently
executing are halted� The execution of dist Greeter�out on machine

argv���p� is terminated� Deallocation of a processor object is trick

ier than that of other objects� a processor object might have other

member functions executing when the destructor is run� This will be
discussed in Chapter 	�

	� The compilation cc�� dist Greeter�cc�� �ptype�Greeter �o dist Greeter�out�
In CC��� a processor object type is de�ned by an executable� The

�ptype� linker option names the processor object type that this ex

ecutable de�nes� When a processor object is created� CC�� checks

to insure that the type speci�ed in the new statement and the type
assigned to the executable match� Here we de�ne the processor object

type Greeter by the executable created from compiling dist Greeter�cc���
The actual name of the executable doesn�t matter�

The next few chapters will explore the concepts presented above in

greater detail� Global pointers� data transfer functions� and processor ob

jects will be examined�

��

Chapter �

Global Pointers

��� Introduction

We have introduced distributed computations as those using several address

spaces� and de�ned a processor object to be an address space� We postpone a
detailed explanation of how these processor objects are de�ned and created

until Chapter 	� In this chapter we discuss how global pointers are used
to communicate data between processor objects� assuming the processor

objects have been created�

In CC�� there are two types of pointers� global pointers and local point

ers� Global pointers can reference addresses in any processor object in the
computation� Local pointers can only reference addresses in the processor

object in which they are created� Global pointers identify data that is ex

pensive to access� while local pointers identify data that is inexpensive to
access�

Global pointers are used much like local pointers� When a global pointer
is dereferenced� the value it references is returned� If the global pointer
references an object� member functions can be invoked through the pointer�
In both these cases� since the object resides on another processor object� an

implicit communication is performed to fetch the value or call the function�
Global pointers are declared by using the keyword global to modify

a pointer declaration� Here are some examples of declarations of global
pointers�

�	

int �global gpint
 �� global pointer to an integer
int � �global gppint
 �� global pointer to a local pointer to an integer

C �global gpC
 �� global pointer to an object of type C

Global pointers can reference basic types and user
de�ned structures� but

in the current implementation they may not reference functions� Thus we
may not declare

int ��global gpf���
 �� ERROR 	 global pointer to function returning int

��� Dereferencing Global Pointers

Because the communication needed to fetch the value referenced by a global

pointer is implicit� we write expressions involving global pointers as if they
were local pointers� For example�

	

int �global gpint

int x � �gpint��

�

Here x is assigned the sum of � and the value referenced by gpint�
We can use gpint without knowing in which processor object the integer

referenced by it resides� The integer might even be in the processor object
where this statement is executed� If this is the case� then the expression is
equivalent to the same expression using a local pointer�

	

int� lpint

int x � �lpint��

�

The current implementation of CC�� does not take full advantage of global

pointers that reference local memory� Dereferencing such global pointers will

take longer than if they were local pointers� but not as long as if the value
resided on another processor object�

��

��� Invoking Functions Through Global Pointers

The communication needed to invoke a member function of an object refer

enced by a global pointer is implicit� as is the transfer of arguments to the
processor object in which the object resides� For example� we write

	

C �global gpC

gpC��a�function��

�

to invoke the function a function�� on the object referenced by gpC� This
mechanism of function invocation through a global pointer is known as a

remote procedure call� or RPC�
Each RPC creates a separate thread of control on the remote processor

object� Thus� several RPCs can execute concurrently� atomic and sync

should be used to avoid the dangerous sharing of mutables that might result�

thread created

thread terminated

C*global gpC;
gpC->a_function();

a_function() {...}

Processor Object#1 Processor Object#2

 thread suspended

thread awoken

Figure ���� Flow of Control in an RPC

The semantics of function call are preserved by an RPC� That is� the
function call statement does not terminate until the function has terminated
on the remote processor object� The �ow of control in an RPC is illustrated
in Figure ����

If the function has a return value� it is returned to the processor object
that made the call� Thus� we can write the following�

��

	

C �global gpC

int x � gpC��a�function�returning�int�����

�

CC�� has a mechanism for controlling how the arguments and return values
of functions called remotely are transfered between processor objects� This
mechanism is described in Chapter ��

Again� a global pointer does not have to reference an address in another

processor object� If the address referenced is on the processor object from

which the function is invoked� the e�ect is the same as a function invocation
through a local pointer�

Functions that are called remotely may not have arguments that are
local pointers� references� or arrays� This is because these types cannot be

copied from one processor object to another� This topic is also covered in
Chapter �� For the same reason� remote functions may not return local

pointers� references� or arrays� Violating either restriction will result in a
compile
time error�

��� Casting Global Pointers

Casting a global pointer to a local pointer when the global pointer does not
reference an address in that processor object is an error� After such a cast�

the address in the local pointer does not reference the same memory that
the global pointer did�

Because of this danger� CC�� will not implicitly cast a global pointer

to a local pointer� If the global pointer really references memory on the
current processor object� then an explicit cast can be used�

	

int �global gpi

int� pi� �int ��gpi
 �� Think Carefully Before Using�
�

An explicit cast must only be used when it is certain that the global pointer

references memory in the local processor object� A run
time error results if

this is not the case�
Local pointers are implicitly� and can also be explicitly� cast into global

pointers� Here are the four possibilities�

	�

	

int� pi

int �global gpi � pi
 �� Implicit local�to�global cast OK
int �global gpi� � �int �global�pi
 �� Explicit local�to�global cast OK
pi � gpi
 �� Implicit global�to�local cast COMPILE�TIME ERROR
pi � �int ��gpi
 �� Explicit global�to�local cast POSSIBLE RUN�TIME ERROR

�

In this example� the explicit global
to
local cast would not be an error� since

we initialized gpi using the local pointer pi�

��� Pitfalls

�� A global pointer takes more memory than a local pointer� and it takes

more time to dereference� Global pointers should be used to indicate

that the data referenced is expensive to obtain�

�� When creating objects whose member functions will be invoked through
RPCs� keep in mind that each RPC creates a separate thread of con

trol� and that concurrently executing RPCs on the same object might
dangerously share mutable variables�

�� Global pointers cannot be ordered� i�e� the relational operators �������

and �� cannot be used with global pointer operands� They may be
compared for equality or inequality using the operators �� and ��� An
expression comparing a global pointer to � �NULL� will evaluate to

true if the global pointer points to � in that processor object�

	

int �global gpint�

int �global gpint�

if �gpint��gpint�� 	���� �� COMPILE�TIME ERROR
if �gpint���gpint�� 	���� �� OK

if �gpint����� 	���� �� OK

�

	�

��� Examples

A Distributed List Let�s modify the synchronizing single
reader single

writer linked list presented in Chapter to append items on one processor
object and remove them on another�

We need to separate the list into two objects�

� DList appending� which will exist in the appending processor object�

� DList removing� which will exist in the removing processor object�

The data that has been appended but not removed will be stored in

DList removing� Thus� we need to transfer an append request to this ob

ject� To do this� we need a global pointer� as DList removing is in a di�erent
processor object than DList appending�

DList appending contains a member removing side� which is a global
pointer to an object of class DList removing� The member function append

just forwards the request through this global pointer� calling the member
function of DList removing named real append�

The declaration in the header �le gptr dlist�h is as follows�

class DList�removing

class DListNode �

private

int data

DListNode �sync next

DListNode �int d� � data � d
 �

friend class DList�removing

�

class DList�removing �

private

DListNode� head

DListNode� tail

atomic void real�append �int a�
 �� Called by DList appending
public

DList�removing �void�

int remove �void�

friend class DList�appending

�

	�

class DList�appending �

private

DList�removing �global removing�side

public

DList�appending�DList�removing �global lr� removing�side�lr� ��

void append �int a�

�

The de�nition in gptr dlist�cc�� is as follows�

�include �gptr�dlist	h�

DList�removingDList�removing �void�

�

head � new DListNode���

tail � head

�

atomic void DList�removingreal�append �int a�

�

DListNode� addition � new DListNode�a�

tail��next � addition

tail � addition

�

int DList�removingremove �void�

�

DListNode� old�head � head

head � head��next

delete old�head

return head��data

�

void DList�appendingappend �int a�

�

�� Use RPC to add item to remote list
removing�side��real�append�a�

�

The member function real append of object DList removing is atomic
so that several RPCs to DList removing can be executing concurrently
but not be dangerously sharing mutables� This makes this list a single

reader multiple
writer list� The sync next �eld of ListNode ensures that a
real append and a remove will not be sharing mutable data�

	�

Producer and Consumer Even though the global pointer is not nec

essary for the list presented above if the appender and remover are in the

same processor object� it will still function correctly� We can see it working
with this program� gptr prod cons�cc��

�include �iostream	h�

�include �gptr�dlist	h�

class Consumer �

public

DList�removing� remover

Consumer�� � remover � new DList�removing��
 �

�Consumer�� � delete remover
 �

void consume �int n�

�

for �int i��
 i�n
 i���

cout �� �Consumer removes � �� remover��remove�� �� endl

�

�

class Producer �

public

DList�appending� appender

Producer�DList�removing �global remover�

�

appender � new DList�appending�remover�

�

�Producer�� � delete appender
 �

void produce�int n�

�

for �int i��
 i�n
 i��� �

cout �� ��appending � �� i �� ���

appender��append�i�

�

�

�

	

int main �int argc� char��argv�

�

Consumer C

Producer P�C	remover�

par �

P	produce����

C	consume����

�

return �

�

We compile and run as follows�

�cc�� gptr�dlist�cc�� �c

�cc�� gptr�prod�cons�cc�� �o gptr�prod�cons�out gptr�dlist�o

�pvmd �

�dpc�out

In Chapter 	� after we have seen how to create processor objects� we use
this distributed list class across processor objects�

	�

Chapter �

Processor Objects

	�� Introduction

A processor object is a collection of data and computation that de�nes a

single address space� Although each processor object is a separate address
space in a CC�� computation� each processor object does not have to be

located on a physically distinct address space�
This distinction between the virtual address spaces �processor objects�

used in specifying the computation and the physical address spaces used to

implement it is important� It allows us to separate the problem of de�ning
the computation from the problem of distributing that computation to the
available resources� We specify the computation in terms of abstract objects�

and then de�ne the mapping from abstract objects to available resources�
If the available resources change� we do not have to change the de�nition of
the computation� only the mapping�

As a trivial example� we saw this in the example in Chapter �� where we
executed

�dist�Hello�out � fides hebe fides

This created three Greeter processor objects� two on a machine at Caltech
named �des and one on a machine named hebe� If we get another machine�

say named rhea� we can execute

�dist�Hello�out � fides hebe rhea fides

without rede�ning what a Greeter does�

	�

In this chapter we will go through a more complex example� a distributed
mergesort� We will explain the syntax behind declaring� de�ning� allocating�

using� and destroying processor objects�
Mergesort can be thought of as a tree of processes� each leaf of which sorts

a segment of the array� and each interior node of which merges two branches�
eventually resulting in a completely sorted list at the root� Figure 	�� shows

the interaction of these two types of objects� Merger and Sorter�

[0..N) sorted

[N/2..N) sorted[0..N/2) sorted

[0..N/4) sorted
[N/4..N/2) sorted

[N/2..3N/4) sorted
[3N/4..N) sorted

Sorter Sorter Sorter Sorter

MergerMerger

Merger

Figure 	��� MergeSort

After we have de�ned Merger and Sorter� we can write a mergesort that
uses these objects�

	�� Declaring Processor Object Types

A processor object type is declared when a class or structure declaration is
modi�ed by the keyword global� The processor object class speci�es the
interface to objects of that type� Public member functions and data may be
accessed by anyone with a global pointer to that processor object�

Processor object types can be inherited� As with C�� objects� private
and protected members are only accessible from member functions of that

		

processor object� or objects derived from it�
In our mergesort� we have Merger objects and Sorter objects� We de

clare them in the common header �le pobj MergeSort�h

�include �gptr�dlist�h� �� Distributed linked list

const int ENDVALUE � ��

global class Sorter 	 �� Sort a list and place it into out
private�

int start�index

int stop�index

DList�appending �global out

void sort��

public�

Sorter �DList�removing �global out�receiver int start int stop�

�

global class Merger 	 �� Merge sorted in� and in� into sorted out
private�

DList�removing� in�

DList�removing� in�

DList�appending� out

void merge��

public�

Merger �DList�removing �global�

DList�removing �global get�in��� 	 return in�
 �

DList�removing �global get�in��� 	 return in�
 �

�

We are going to use the distributed list built in Chapter � to send sorted

lists between our processor objects� Thus� each Sorter has a global pointer

to a DList removing on the Merger object that is its parent in the tree�
Similarly� each Merger has a global pointer to its parent�

	�

	�� De�ning Processor Object Types

Processor object types are de�ned by assigning a type to an executable

compiled using CC��� The processor object type to assign to an executable
is speci�ed using the compiler option �ptype�� The type must have been
declared in the executable� otherwise� a link
time error will result�

De�ning a processor object as an executable means there are two types

of members for processor objects� implicit and explicit� Implicit members
are those functions and objects at �le scope in the executable� while explicit
members are those explicitly declared in the processor object type� Implicit

members are protected members of the processor object type and cannot be
accessed using a global pointer to the processor object�

In our mergesort� we will de�ne the Sorter processor object by compiling
the �le pobj Sorter�cc��� shown here�

�� De�nition of Member Functions of Processor Object Sorter
�include �pobj�MergeSort�h�

void Sorter��sort��

	

�� Sort a portion of an array� perhaps reading it from disk�

�� In this example� just output a sorted list of numbers�
for �int i�start�index
 i�stop�index
 i���

out��append�i�

out��append�ENDVALUE�

�

Sorter��Sorter �DList�removing �global remover int start int stop�

� start�index�start� stop�index�stop�

	

out � new DList�appending�remover�

spawn sort��

�

We de�ne the constructor Sorter��Sorter and the member function Sorter��sort

as explicit members of the type Sorter� When we compile this using

�cc�� pobj�Sorter�cc�� �o pobj�Sorter�out �ptype�Sorter gptr�dlist�o

	�

all �le scope objects and variables in gptr dlist�o become implicit mem

bers of Sorter� The executable pobj Sorter�out is now a processor object

of type Sorter�
We similarly de�ne Merger

�cc�� pobj�Merger�cc� �o pobj�Merger�out �ptype�Merger gptr�dlist�o

where pobj Merger�cc�� contains

�� De�nition of Member Functions of Processor Object Merger
�include �pobj�MergeSort�h�

void Merger��merge��

	

int top� � in���remove��
 �� Smallest UnMerged Element in in�

int top� � in���remove��
 �� Smallest UnMerged Element in in�

while ��top���ENDVALUE� �� �top���ENDVALUE�� 	

if �top���top�� 	

out��append�top��

top� � in���remove��

�

else 	

out��append�top��

top� � in���remove��

�

�

while �top���ENDVALUE� 	

out��append�top��

top� � in���remove��

�

while �top���ENDVALUE� 	

out��append�top��

top� � in���remove��

�

out��append�ENDVALUE�

�

��

Merger��Merger�DList�removing �global remover�

	

in� � new DList�removing��
 in� � new DList�removing��

out � new DList�appending�remover�

spawn merge��

�

	�� Allocating Processor Objects

Processor objects are allocated using the C�� new operator�

	

proc�t placement��pobj�Merger�out��fides��

Merger� global merger� � new �placement� Merger�constructor�arguments�

�

The placement argumentmust be of type proc t� proc t is an implementation

de�ned type that speci�es where to place a processor object and where to
�nd its de�nition� In our implementation of CC��� proc t contains two
�elds� an executable name and a machine name� The executable name states

where the de�nition of the processor object can be found� and the machine
name states on what machine that processor object should be created�

The interface to type proc t is as follows�

class proc�t 	

public�

char� host�name

char� executable�path

proc�t��

�proc�t��

proc�t �const proc�t ��

proc�t �char� executablechar� host�

proc�t � operator��const proc�t ��

�

When creating a processor object� CC�� checks that the type assigned
to the executable given in the proc t matches the type of the processor
object being created� If these do not match� a run
time error occurs� For
example� we get a run
time error with this piece of code�

��

	

proc�t placement��pobj�Sorter�out��fides��

Merger �global merger � new �placement� Merger�constructor�arguments�

�

The type assigned to pobj Sorter�out was Sorter� while the allocation
statement is creating an object of type Merger� The call to new returns a
global pointer to the newly created processor object�

	�� Using Processor Object Pointers

A processor object acts like any other C�� object� it stores data members

and can be requested to perform member functions on that data� Invoking
a member function of a processor object through a global pointer to that

processor object results in a thread of control being created to perform that

member function� When the member function terminates� that thread is
terminated� Multiple member functions can be executing on a processor
object simultaneously�

These member functions might return global pointers to objects in the

processor object� For instance� in our mergesort we need a global pointer
to the DList removing object in a Merger in order to construct a Sorter

object� Thus� member functions �get in��� and get in���� in type Merger
return global pointers to their DList removing members�

Thus� we could create a mergesort with two sorters and one merger as
follows�

	

proc�t merger�placement��pobj�Merger�out�argv����

proc�t sorter��placement��pobj�Sorter�out�argv����

proc�t sorter��placement��pobj�Sorter�out�argv����

Sorter �global sorters���

Merger �global merger

�� Create Merger Processor Object
DList�removing� final�output � new DList�removing��

merger � new �merger�placement� Merger�final�output�

��

�� Create Sorter Processor Objects
DList�removing �global merger�left�input � merger��get�in���

sorters��� � new �sorter��placement� Sorter�merger�left�input�N���

DList�removing �global merger�right�input � merger��get�in���

sorters��� � new �sorter��placement� Sorter�merger�right�inputN��N�

�

	�� Deallocating Processor Objects

Processor objects are deallocated using the C�� delete operator�

delete merger

When a processor object is deallocated� all member functions currently run

ning are terminated� Deleting a pointer to an object that has already been
deleted results in unde�ned behavior�

Since all member functions which are executing on a processor object are

terminated when a processor object is deallocated� we have to be careful�
Many threads of control in the computation may be waiting for member
functions of the deleted processor object to complete� These threads of

control will be suspended forever� perhaps resulting in the suspension of our
entire computation�

In our mergesort example� the constructors for Sorter and Merger spawn
member functions sort and merge respectively� The semantics of CC��

make no guarantees about when these functions will terminate� However�
we know that when the end of the merged output stream is received� these
functions have in fact terminated and it is safe to delete all the processor
objects�

	�	 CC Computations

A CC�� computation is initiated by specifying an initial processor object�
Only in this processor object is the function main executed� This proces

sor object may create other processor objects� which may create still other
processor objects�

A computation is terminated when main terminates on the initial proces

sor object� or when exit�� or abort�� is called from any processor object�

��

Terminating a computation results in the termination of all threads of con

trol on all processor objects and the deallocation of all processor objects�

The initial processor object is speci�ed by executing a program of the
type of the initial processor object� When we compile a CC�� program
without specifying a type for the executable� an anonymous type is created�
Thus� all the programs we wrote in Chapters �
 de�ned anonymous pro

cessor object types� When we executed them� we created a single processor
object�

	�� The ��this Pointer

Every processor object member� whether implicit or explicit� has a pointer to
the processor object on which it is being invoked� This pointer is analogous
to the C�� this pointer� In CC��� ��this is a pointer to the current

processor object� In the current implementation� however� this syntax is
replaced by THIS�type� where type is the type of the current processor
object�

	�� Pitfalls

Take care to remember these things when using processor objects�

�� Multiple threads of control can be executing on one processor object at
any one time� since anyone with a global pointer to a processor object
can perform an RPC� Use atomic and sync to prevent dangerous

sharing�

�� The destructor for a processor object is just another member function

of that object� It can be running concurrently with other threads
on the processor object� and will not wait for those other threads to
�nish before deallocating the processor object� In CC�� it is bad

style to �nish a computation when all processor objects have not been
deallocated� The system will try to deallocate those processor objects
left by the user� The system is not always able to do this� and in CC��
the consequences of an undeallocated processor object are signi�cant�

a process left running� wasting processor time and resources� That
process may even exist on another machine� Ending a computation
with exit�� from any processor object guarantees that all processor
objects are deleted� while ending it with abort�� will not� Killing a

�

single process in the computation� for instance using the UNIX kill

command� will not terminate the entire computation�

In addition� the current implementation has the following pitfalls�

�� The syntax delete �� to delete an array of pointers cannot be used
with an array of pointers to processor objects�

�� CC�� de�nes a function� called the entry function� for each type to
handle RPCs to objects of that type� This function is automatically
generated by the compiler� When compiling many modules into one
executable� the same type can be declared many times� If the entry

function is de�ned in each module� a link
time error will result� Be

cause of this� CC�� de�nes the entry function for a type at the point
of the �rst non
inline non
constructor member function of that type�
If there are no non
inline non
constructor members of a type� you can

force entry functions to be de�ned at the point of type declaration by
using the compiler option �ee��

	��
 Examples

MergeSort Here is a complete MergeSort that uses the Merger and Sorter

processor objects discussed in this chapter� This pobj MergeSort�cc�� cre

ates � sorters and � merger� splitting the work evenly between the sorters�

�include �pobj�MergeSort	h�

�include �iostream	h�

�include �stdlib	h�

��

int read�output �DList�removing� out� int N�

�

int prev � ��

int all�correct � �

for �int i��
 i�N
 i��� �

int temp � out��remove��

if �temp�prev� �

cout �� �GOT ITEM ����i��� OUT OF ORDER� �� endl

all�correct � �

�

prev � temp

�

out��remove��
 �� ENDVALUE
return all�correct

�

int main �int argc� char� argv���

�

if �argc��� �

cout �� �MergeSortNot enough arguments	 Expect� �� endl

cout �� � Argument �� � of Elements to sort �N�� �� endl

cout �� � Argument �� Machine to place merger� �� endl

cout �� � Arguments ���� Machines to place sorters� �� endl

exit���

�

int N � atoi�argv����

proc�t merger�placement��pobj�Merger	out��argv����

proc�t sorter��placement��pobj�Sorter	out��argv����

proc�t sorter��placement��pobj�Sorter	out��argv����

Sorter �global sorters���

Merger �global merger

�� Create Merger Processor Object
DList�removing� final�output � new DList�removing��

merger � new �merger�placement� Merger�final�output�

�� Create Sorter Processor Objects
DList�removing� global merger�left�input � merger��get�in���

sorters��� � new �sorter��placement� Sorter�merger�left�input���N���

DList�removing� global merger�right�input � merger��get�in���

sorters��� � new �sorter��placement� Sorter�merger�right�input�N���N�

��

�� Check that output list is in ascending order
int result � read�output�final�output�N�

if �result���� cout �� �Incorrect MergeSort� �� endl

else cout �� �Correct MergeSort� �� endl

�� Deallocate Processor Objects
delete merger
 delete sorters���
 delete sorters���

return result

�

To compile and run this� we write

�cc�� pobj�MergeSort�cc�� �o pobj�MergeSort�out gptr�dlist�o

�pvmd hostfile �

�pobj�MergeSort�out ��� fides hebe rhea

�	

Chapter �

Data Transfer Functions

��� Introduction

In Chapter � we learned that when a function with arguments is invoked

through a global pointer� those arguments are copied to the remote processor
object and the function invoked with those copies� Function return values

are similarly transferred back to the processor object that invoked the remote
function�

While transferring the arguments is simple if they are basic types� it

is more complex when they are user
de�ned structures� particularly if they
contain local pointers� �Recall that local pointers are only valid in the
processor object in which they are created��

To give you control over how types are transferred� in CC�� every type
has a pair of functions which de�ne how to transfer that type to another
processor object� These functions are the data transfer functions for that

type�
Once de�ned for a type� these functions are automatically invoked by

the compiler to perform all transfers of that type� You do not need to call
these functions explicitly� they are invoked implicitly by calling a function

through a global pointer that takes an argument of that type� They are also
automatically invoked when a remote function returns a value of that type�

The function

CCVoid� operator���CCVoid�const TYPE� obj�in�

de�nes how TYPE should be packaged up� It is called by the compiler
whenever an object of TYPE needs to be transferred to another processor

��

object�
Similarly� the function

CCVoid� operator���CCVoid�TYPE� obj�out�

de�nes how TYPE should be unpackaged� It is called by the compiler when

ever an object of TYPE is received from another processor object� Upon
termination� obj out will be a copy of the obj in used as the argument to

the operator�� in the initial processor object�
The type CCVoid is a compiler
de�ned type analogous to class ios of

the iostream library� Data transfer functions are used much like the input

and output streams of C��� In C�� the functions

ostream� operator���ostream�const TYPE� obj�in�

istream� operator���istream�TYPE� obj�out�

de�ne how TYPE should be packaged to and retrieved from storage�

��� Building Transfer Functions

CC�� de�nes these packaging and unpackaging routines for the following

types� basic integer types� �oat� double and global pointers� The basic
integer types are� char� short� int� long� sync char� sync short� sync int� sync
long and the unsigned varieties of each of these� With these building blocks�
the transfer functions for other types can be de�ned� For instance�

class Point 	

float x�coordinate

float y�coordinate

friend CCVoid� operator���CCVoid�const Point��

friend CCVoid� operator���CCVoid�Point��

friend ostream� operator���ostream�const Point��

friend istream� operator���istream�Point��

�

��

CCVoid� operator���CCVoid� vconst Point� p�out�

	

v �� p�out�x�coordinate �� p�out�y�coordinate

return v

�

ostream� operator���ostream� v const Point� p�out�

	

v �� p�out�x�coordinate �� p�out�y�coordinate

return v

�

CCVoid� operator���CCVoid� vPoint� p�in�

	

v �� p�in�x�coordinate �� p�in�y�coordinate

return v

�

istream� operator���istream� v Point� p�in�

	

v �� p�in�x�coordinate �� p�in�y�coordinate

return v

�

Notice the similarities between the data transfer functions and the input�output
stream functions for class Point� The data transfer functions are declared

friends of Point so that they may access the private data members of Point�
Both istream� operator�� and CCVoid� operator�� operate on an

object for which memory has already been allocated and initialized� The
compiler invokes the default constructor to initialize an object� and then
invokes CCVoid� operator�� with the initialized object� Thus� a default

constructor must be de�ned for each type� Like C��� CC�� will automat

ically generate a default constructor for a type if there is no other constructor
de�ned for that type�

��� Structures with Local Pointers

CC�� does not de�ne how local pointers are passed between processor
objects� While the value of an integer means the same thing in all processor

��

objects� a local pointer is valid only in the processor object in which it was
created�

For structures with local pointers� then� the information needs to be
packaged in such a way as to enable the reconstruction of the same structure
in the other processor object� For instance�

class Vector 	

int length

double� elements

friend CCVoid� operator���CCVoid�const Vector��

friend CCVoid� operator���CCVoid�Vector��

�

CCVoid� operator���CCVoid� vconst Vector� input�

	

v �� input�length

for �int i��
 i�input�length
 i���

v �� input�elements�i�

return v

�

CCVoid� operator���CCVoid� vVector� output�

	

v �� output�length

output�elements � new double�output�length�

for �int i��
 i�output�length
 i���

v �� output�elements�i�

return v

�

The local pointer is never really transferred� Rather� the elements of the
array that it references are sent in an agreed upon order � from lowest index
to highest index � so that the identical array can be reconstructed remotely�
Also notice that no constructor has been de�ned for type Vector� and thus

CC�� will de�ne one automatically�
The problems with transferring local pointers are also present for arrays�

and must be dealt with similarly�

��

��� Automatic Transfer Function Generation

If there are no local pointers or arrays in a user
de�ned type� then the CC��

compiler can generate the correct transfer functions automatically� For in

stance� the correct transfer functions for class Point can be generated
automatically� while those for class Vector cannot be�

This implementation of CC�� follows these rules for automatic transfer

function generation�

� All types must have data transfer functions de�ned�

� The compiler can generate the correct transfer functions for struc

tures where all data members are basic types� global pointers� or user

de�ned structures� The compiler cannot generate the correct transfer
functions for types with local pointers or arrays �even statically sized��

� The compiler will generate transfer functions for all types that the

user does not� If the type contains a local pointer or an array� and the
user has not declared the transfer functions� a compile
time warning
will be given� and the generated transfer function will not try to pass

the local pointer or the array� This is a warning rather than an error
so that users interested only in a single address space will not have to
write data transfer functions�

� The user noti�es the compiler that they will specify the transfer func

tions for a type by declaring them as friends of that type� The user

should make these functions friends� even if that friendship is not re

quired to access the private members of the type� A link
time error
will result if these functions are declared but not de�ned� A link
time

error will result if these functions are de�ned without being declared
as friends in the type declaration�

� The compiler will generate either zero or two transfer functions for
each type� The user may not de�ne one transfer function and have the
compiler de�ne the other�

� When compiling multiple modules into one executable� the same type
can be declared many times� If the transfer functions for that type are
de�ned in each of them� a link
time error will result� Because of this�
if the CC�� compiler is going to generate the transfer functions for

a type� it does so where the �rst non
inline� non
constructor member

��

function of that type is de�ned� If there are no such members� then
the compiler option �ee� will force transfer functions to be generated

for all types in that compile� at the point where the type is declared�

��� Pitfalls

Here are some things about data transfer functions to watch out for�

�� A default constructor must be de�ned for all types� The default con

structor is invoked before an object is unpacked using operator���

�� Although the compiler may be able to generate the correct transfer
functions for a type� where correct means an identical copy of the

object is produced in the remote processor objct� that may not be

what you want� You can generate the transfer functions for any type
you want� the compiler only generates functions for types you do not�

�� The const in the argument to operator�� is important� Modifying
the structure while it is being packaged is modifying a mutable variable

while it is being read�

� Be careful when passing structures with global pointers� The compiler

generated transfer functions will pass the global pointer� not the object
referenced by the global pointer� The Examples section below explores

this issue in more detail�

�� It is good practice to think of operator�� and operator�� as two
more functions to be de�ned for each type� along with the constructor�
the destructor� the assignment operator� etc�

��� Examples

Here we present data transfer functions for some complicated structures�

Linked List Suppose we need to transfer a linked list between processor
objects� The type is de�ned much like the linked list used in Chapter �
except that no sync links are used�

��

struct ListNode �

ListNode� next

int data

ListNode �int d� � data � d
 next � �
�

ListNode�� �� �� Default constructor to be called before operator��

friend CCVoid� operator���CCVoid��const ListNode��

friend CCVoid� operator���CCVoid��ListNode��

�

struct List �

int size

ListNode� head

ListNode� tail

List�� � head � �
 tail � �
 size � �
 � �� Called before operator��

void append �ListNode� nn� �

if �tail���� � tail��next � nn
 tail � nn
 �

else � head � nn
 tail � nn
 �

size��

�

void remove��

friend CCVoid� operator���CCVoid��const List��

friend CCVoid� operator���CCVoid��List��

�

We might write the transfer functions as follows

CCVoid� operator���CCVoid� v�const ListNode� in�

�

v �� in	data
 return v

�

CCVoid� operator���CCVoid� v�ListNode� out�

�

v �� out	data
 return v

�

CCVoid� operator���CCVoid� v�const List� in�

�

v �� in	size

ListNode� temp � in	head

for �int i��
 i�in	size
 i��� �

v �� �temp
 temp � temp��next

�

return v

�

�

CCVoid� operator���CCVoid� v�List� out�

� �� Assume head��� and tail��� and size���
int size
 v �� size

for �int i��
 i�size
 i��� �

ListNode� new�node � new ListNode��
 v �� �new�node

out	append�new�node�

�

return v

�

We send the ListNode structures in head to tail order� and reconstruct the
list in the remote processor object� The ListNode structures are just integers
here� but in general they could be arbitrarily complex data structures� Note

that the unpacking function for the list assumes that head��� �� tail���

�� size���� i�e�� that the default constructor has been called for the object
into which the data is being unpacked�

Linked List with global pointers If we modify List and ListNode to

use global pointers� and allow the compiler to generate the transfer functions�
then the code generated by the compiler would look something like this�

struct ListNode �

ListNode �global next

int data

ListNode�int d� � data � d
 next � �
 �

ListNode�� �� �� Default constructor to be called before operator��

friend CCVoid� operator���CCVoid��const ListNode��

friend CCVoid� operator���CCVoid��ListNode��

�

struct List �

int size

ListNode �global head

ListNode �global tail

List�� � head � �
 tail � �
 size � �
 � �� Called before operator��

void append �ListNode� nn�

void remove��

friend CCVoid� operator���CCVoid��const List��

friend CCVoid� operator���CCVoid��List��

int size

�

��

CCVoid� operator���CCVoid� v� const ListNode� in�

�

v �� in	next �� in	data

return v

�

CCVoid� operator���CCVoid� v� ListNode� out�

�

v �� out	next �� out	data

return v

�

CCVoid� operator���CCVoid� v�const List� in�

�

v �� in	size �� in	head �� in	tail

return v

�

CCVoid� operator���CCVoid� v�List� out�

�

v �� out	size �� out	head �� out	tail

return v

�

However� these transfer functions would not result in the list being wholly
transferred to the other processor object� When a global pointer is trans

ferred� the object it references is not� Thus� the transferred list still points
to the same block of memory in the initial processor object� The transferred
list would look as shown in Figure ����

This is known as a shallow copy of an object� A shallow copy is one where
only the object� and not memory referenced by it� is copied� In contrast� a
deep copy is one where the object� and all memory referenced by it� is copied�
The compiler
de�ned global pointer transfer is a shallow copy� Thus� if you

want a deep copy� you have to write the transfer function yourself�

Tree We want to write transfer functions for this tree class�

��

Initial Address Space Remote Address Space

List
size=4
head
tail 2

3

4

1 List
size=4
head
tail

Figure ���� Transferred List Object

enum Tree�type�no�children�left�child�only�right�child�only�both�children�

struct Tree �

int data

Tree�type info

Tree� left�child
 Tree� right�child

Tree�� �� �� Default constructor to be called before operator��

friend CCVoid� operator���CCVoid��const Tree��

friend CCVoid� operator���CCVoid��Tree��

�

The transfer functions might be written as follows�

�	

CCVoid� operator���CCVoid� v�const Tree� in�

�

int info � in	info

v �� info
 �� Transfer the enumerated type as an integer
v �� in	data

switch �in	info� �

case no�children break

case left�child�only v �� ��in	left�child�
 break

case right�child�only v �� ��in	right�child�
 break

case both�children v �� ��in	left�child� �� ��in	right�child�
 break

�

return v

�

CCVoid� operator���CCVoid� v�Tree� out�

�

int info
 v �� info
 out	info � �Tree�type�info

v �� out	data

switch �out	info� �

case no�children

out	right�child � out	left�child � �

break

case left�child�only

out	right�child � �

out	left�child � new Tree��
 v �� ��out	left�child�

break

case right�child�only

out	left�child � �

out	right�child � new Tree��
 v �� ��out	right�child�

break

case both�children

out	left�child � new Tree��
 v �� ��out	left�child�

out	right�child � new Tree��
 v �� ��out	right�child�

break

�

return v

�

Again� the unpacking function initializes the already allocated object out�
The packing and unpacking functions agree to use pre�x notation for the
tree� and to preface each data value with information about what� if any�
children that node has�

��

	Tutorial-for-C++ i
	Tutorial-for-C++ ii
	Tutorial-for-C++ iii
	Tutorial-for-C++ iv
	Tutorial-for-C++ v
	Tutorial-for-C++ vi
	Tutorial-for-C++ vii
	Tutorial-for-C++ viii
	Tutorial-for-C++ 1
	Tutorial-for-C++ 2
	Tutorial-for-C++ 3
	Tutorial-for-C++ 4
	Tutorial-for-C++ 5
	Tutorial-for-C++ 6
	Tutorial-for-C++ 7
	Tutorial-for-C++ 8
	Tutorial-for-C++ 9
	Tutorial-for-C++ 10
	Tutorial-for-C++ 11
	Tutorial-for-C++ 12
	Tutorial-for-C++ 13
	Tutorial-for-C++ 14
	Tutorial-for-C++ 15
	Tutorial-for-C++ 16
	Tutorial-for-C++ 17
	Tutorial-for-C++ 18
	Tutorial-for-C++ 19
	Tutorial-for-C++ 20
	Tutorial-for-C++ 21
	Tutorial-for-C++ 22
	Tutorial-for-C++ 23
	Tutorial-for-C++ 24
	Tutorial-for-C++ 25
	Tutorial-for-C++ 26
	Tutorial-for-C++ 27
	Tutorial-for-C++ 28
	Tutorial-for-C++ 29
	Tutorial-for-C++ 30
	Tutorial-for-C++ 31
	Tutorial-for-C++ 32
	Tutorial-for-C++ 33
	Tutorial-for-C++ 34
	Tutorial-for-C++ 35
	Tutorial-for-C++ 36
	Tutorial-for-C++ 37
	Tutorial-for-C++ 38
	Tutorial-for-C++ 39
	Tutorial-for-C++ 40
	Tutorial-for-C++ 41
	Tutorial-for-C++ 42
	Tutorial-for-C++ 43
	Tutorial-for-C++ 44
	Tutorial-for-C++ 45
	Tutorial-for-C++ 46
	Tutorial-for-C++ 47
	Tutorial-for-C++ 48
	Tutorial-for-C++ 49
	Tutorial-for-C++ 50
	Tutorial-for-C++ 51
	Tutorial-for-C++ 52
	Tutorial-for-C++ 53
	Tutorial-for-C++ 54
	Tutorial-for-C++ 55
	Tutorial-for-C++ 56
	Tutorial-for-C++ 57
	Tutorial-for-C++ 58
	Tutorial-for-C++ 59
	Tutorial-for-C++ 60
	Tutorial-for-C++ 61
	Tutorial-for-C++ 62
	Tutorial-for-C++ 63
	Tutorial-for-C++ 64
	Tutorial-for-C++ 65
	Tutorial-for-C++ 66
	Tutorial-for-C++ 67
	Tutorial-for-C++ 68
	Tutorial-for-C++ 69
	Tutorial-for-C++ 70
	Tutorial-for-C++ 71
	Tutorial-for-C++ 72
	Tutorial-for-C++ 73
	Tutorial-for-C++ 74
	Tutorial-for-C++ 75
	Tutorial-for-C++ 76
	Tutorial-for-C++ 77
	Tutorial-for-C++ 78
	Tutorial-for-C++ 79
	Tutorial-for-C++ 80
	Tutorial-for-C++ 81
	Tutorial-for-C++ 82
	Tutorial-for-C++ 83
	Tutorial-for-C++ 84
	Tutorial-for-C++ 85
	Tutorial-for-C++ 86
	Tutorial-for-C++ 87
	Tutorial-for-C++ 88
	Tutorial-for-C++ 89
	Tutorial-for-C++ 90
	Tutorial-for-C++ 91
	Tutorial-for-C++ 92
	Tutorial-for-C++ 93
	Tutorial-for-C++ 94
	Tutorial-for-C++ 95
	Tutorial-for-C++ 96
	Tutorial-for-C++ 97
	Tutorial-for-C++ 98

