The Specification of Distributed Objects: Liveness and
Locality *

Paolo A. G. Sivilotti and Charles P. Giles
Department of Computer and Information Science
The Ohio State University
Columbus, OH 43210-1277

Abstract

There are two aspects to the behavioral spec-
ification of an object in a distributed sys-
tem: safety and liveness. This paper describes
our component-based mechanism for specify-
ing liveness. The specification of a distributed
object is typically a syntactic definition of its
interface (e.g., the method signatures). Sev-
eral proposals exist for extending these syntac-
tic definitions to provide behavioral informa-
tion (e.g., preconditions and postconditions).
However, many of these proposals have failed
to address liveness properties. In this paper,
we argue for the need to express such prop-
erties. Our approach is a simple extension of
CORBA IDL. Our extension is guided by the
“design-by-contract” philosophy of sequential
systems. In particular, our approach is con-
sistent with testing for contract violations and
debugging. These activities are critical for the
practical use of any specification methodology
in real systems.

1 Introduction

The development of object-based distributed
systems has recently been facilitated by the
development of middleware technologies and
standards such as CORBA [20], Java RMI [30],
and DCOM [8]. At their core, these technolo-
gies provide the communication functionality
between remote objects. The interfaces for
these objects are typically defined by the signa-
tures (argument types, function name, return

*This work was partially funded by an Ohio State
University Seed Grant.

type) of the exported methods. Such interface
definitions do not provide any semantic infor-
mation about method behavior.

The limitations of such definitions have long
been recognized in both sequential and dis-
tributed systems. The “design-by-contract”
[18] philosophy of software design partitions re-
sponsibility for correctness between the caller
of a method and the callee. It is the obligation
of the caller to establish the required precon-
ditions before the method is invoked and it is
the obligation of the callee, given these precon-
ditions, to ensure the postconditions when the
method terminates. Eiffel [17] is an example
of an implementation language in which these
concepts have been made first-class language
constructs. Designing software in this manner
promotes the construction of correct systems
and the reuse of code. The Object Manage-
ment Group, originators of the CORBA stan-
dard, has recognized the need for behavioral
specifications in distributed object systems and
has formed a working group to investigate this
issue.

The “design-by-contract” philosophy has
been extended to distributed systems in two
different ways. The first approach is to aug-
ment method signatures with “requires” and
“ensures” clauses as are used in sequential sys-
tems. Because these specifications are so simi-
lar to those used in sequential systems, they are
familiar for designers and (relatively) natural
to write. Certain subtleties, however, arise in
their use in distributed systems. For example,
since there may be many concurrent threads of
execution, the caller of a method cannot uni-
laterally guarantee that the required precondi-

tions hold when the method begins executing.
This phenomenon, termed the “precondition
paradox” [18, Chapter 30], has been neglected
by many specification methodologies. An even
more fundamental limitation of this approach is
its failure to express liveness properties. These
properties are inherent in the specification of
reactive systems and of many peer-to-peer dis-
tributed systems.

The second approach to distributed compo-
nent specification is based on temporal logic
[15]. Some temporal requirements are placed
on the behavior of the environment and — if
these requirements are satisfied — the compo-
nent is guaranteed to satisfy some other tempo-
ral properties [11]. This approach does permit
the specification of liveness properties. How-
ever, these specification notations are often
very formal and the temporal operators some-
what unnatural for developers to write. Also,
these notations are usually not considered in
conjunction with practical testing and debug-
ging techniques. The environment on which
the requirements are placed typically consists
of multiple distributed objects. To test whether
the environment satisfies these properties (akin
to testing the precondition in the first ap-
proach) may require gathering global state in-
formation, so it is often not practical. Testing,
however, is vitally important in the develop-
ment of real systems and the lack of support
for testing has impeded the adoption of these
temporal specification methodologies.

The contribution of this paper is a specifica-
tion technique that combines the strengths of
the two approaches outlined above: It permits
the specification of liveness properties while at
the same time providing support for testing.
The methodology is based on a very simple op-
erator: transient . It is consistent with prac-
tical testing since we restrict properties to lo-
cal predicates—that is, predicates on state vari-
ables of only the object in question. This con-
cept of locality is central to the practical sup-
port for testing since gathering global state in
a distributed system is often expensive.

This paper also describes the implementa-
tion of a tool that integrates our specifica-
tion primitives with the testing and debug-
ging cycles of distributed system development.
This tool is presented as an extension of a

CORBA-compliant object request broker (OR-
Bacus [21]).

The rest of this paper is organized as follows.
In Section 2, we motivate the need for live-
ness properties in distributed object systems.
In Section 3, we describe the fundamental con-
struct used to describe liveness. In Section 4,
we discuss how liveness properties can be incor-
porated in the testing and debugging phase of
system development. In Section 5, we outline
a tool for supporting this approach in the con-
text of CORBA. Finally, in Sections 6 and 7,
we contrast this project with some related work
and summarize our findings.

2 The Need for Liveness

The client-server architecture is a common
paradigm for constructing distributed systems
[22]. In this style of programming, the server
is often implemented as an object that ex-
ports various methods to remote clients. These
remote clients, executing concurrently, invoke
methods on the server object via this exported
interface. Reasoning about client behavior is
simplified when the method invocations are
synchronous. That is, a client suspends exe-
cution until the server method has completed
and has returned its result. Reasoning about
server behavior is simplified when the server
methods execute atomically. That is, although
the remote clients are executing concurrently,
their invocations of server methods are seri-
alized such that one method is executed at a
time.

In this model, a precondition and postcondi-
tion specification of the server methods is suf-
ficient to fully define the functionality of the
server. Client-server programming, however, is
a very limited view of the more general class
of distributed systems. In general, distributed
objects interact as peers, both sending and re-
ceiving method invocations. In these peer-to-
peer architectures, method invocation is typi-
cally asynchronous. (This helps prevent a large
class of simple deadlock errors.)

In the peer-to-peer model, methods can still
be considered to execute atomically, so long
as the semantics of inter-object communication
meet certain constraints [14, 29]. By augment-

ing the state of an object with the history of
method invocations it has sent and received,
the functionality of a server method can be de-
scribed with preconditions and postconditions.
The postcondition of a method might express,
for example, that the object’s instance data
satisfies some predicate and that a method in-
vocation has been sent to some other object in
the computation.

These specifications are examples of safety
properties [13]. Informally, safety properties
say that “nothing bad can happen.” Another
class of specifications are liveness properties.
Informally, liveness properties say that “some-
thing good happens eventually.” Alpern and
Schneider have shown that every behavioral
property of a distributed system can be ex-
pressed as the conjunction of safety and live-
ness [2].

As an example of liveness in the context of
distributed objects, consider a simple collabo-
rative application with two users. Each user
has an associated object to manage the collab-
oration (call it CollabMgr). Assume that each
CollabMgr object has a reference to the other.!

These objects are symmetric in that either
can initiate the collaborative session. After a
CollabMgr object is initialized, it can then re-
ceive a method invocation of RequestSession(),
signaling that the remote CollabMgr is ready
to initiate a collaborative session. Notice that
this method must be invoked asynchronously
to avoid deadlock when both users happen to
request a session simultaneously. The syntac-
tic interface for this object, as described in
CORBA IDL, is given in Figure 1.

interface CollabMgr {
oneway void Initialize ();
oneway void RequestSession ();

};

Figure 1: Syntactic Interface of CollabMgr Ob-
ject

IThere are several ways to accomplish this. The
CORBA standard, for example, allows externalization
of object references into ASCII strings. These strings
can be published on web pages or sent by email. They
can also be translated back into an object reference by
a remote object.

There are two important aspects of this
protocol. Firstly, there is no guarantee how
quickly one CollabMgr will issue a request to
initiate a collaborative session (since this re-
quest originates from a nondeterministic user).
Secondly, as the user is deciding when to issue
such a request, other messages can be received
from the remote CollabMgr. In particular, a
message requesting a session can be received.

A communication protocol can be repre-
sented as a communicating finite-state machine
(CFSM) [3, 9]. The CollabMgr protocol in-
formally described above is given in Figure 2.
Each circle represents a state of the CollabMgr
object. The arcs represent transitions between
these states and are annotated with send ac-
tions (denoted by “-”) or receive actions (de-
noted by “+7). It is significant that from the
Ready state, both send and receive actions are
possible.

+Initialize()

+RegquestSession() -RequestSession()

WaitRemote

+RequestSession()

-RequestSession()

Figure 2: Protocol for CollabMgr Object

A state from which the protocol can either
send or receive a message is known as a mized
node [31]. The semantics of CFSM protocols
typically state that “a component will not in-
definitely remain in a state that contains a send
transition.” [31] This is a liveness property
that must be captured in the specification of
the component.

The difficulty with precondition and post-
condition based specifications of distributed
objects arises when mixed nodes occur in the
protocol. Informally, a mixed node requires
writing as the postcondition of some method:
“either a message has been received or a mes-
sage has been sent”. The reception of a mes-
sage, however, corresponds to the execution of
a different method, so it cannot be conveniently
expressed as a postcondition.

In the CollabMgr example, consider the spec-
ification of the Initialize() method. This op-
eration makes the CollabMgr ready to accept
session requests. The postcondition of this
operation should express that either Request-
Session() is invoked on the remote CollabMgr
or RequestSession() is invoked on this object.
That is, the postcondition of Initialize() might
or might not include the invocation of the Re-
questSession() method! This is outside the
scope of ordinary postcondition expressions.
The solution is a new element in the specifi-
cation of the CollabMgr: liveness.

In the interest of space, we have given a sin-
gle simple example of a protocol that includes
a mixed node. This example, however, should
not be viewed as a concocted pathological case.
Mixed nodes are in fact common in distributed
peer-to-peer systems. We have observed such
protocols arising naturally in e-commerce ap-
plications (in particular, a distributed auction),
combinatorial algorithms (in particular, a dis-
tributed branch-and-bound search), and inter-
active distributed games, to name a few.

3 Specifying and Ensuring
Liveness: The transient
Operator

Many different temporal operators have been
used to capture liveness properties. Examples
include ¢ (pronounced “eventually”) [15],
ensures [4], leads—to [26], — (pronounced
“to always”) [5], and transient [19]. For the
specification of liveness in distributed objects,
we choose transient as our fundamental op-
erator.

The property transient.P holds for a pro-
gram in which if predicate P is true at any
point, it is guaranteed to be false at some later
point. In the CollabMgr example given earlier,
the desired liveness property can be expressed
as:

transient. Ready

where Ready is the predicate that is true pre-
cisely when the object is in the Ready state
of the protocol. Alternatively, the histories of
send and receive actions can be used to express

this same property:

transient.(delp(Initialize)

A —(delp(RequestSession)
V sentp(RequestSession)))

where delp(m) is true if and only if there has
been a delivery of an invocation of method m
(and, similarly, sentp(m) is true if and only if
a request to invoke method m has been sent).

We choose transient as our fundamental
operator for expressing liveness for two reasons.
Firstly, it enjoys a nice property under compo-
sition: If transient.P is a property of some
object, it is a property of any system in which
that object is used. In the language of [5], it is
an example of an “exists-component” property.
Secondly, transient.P lends itself to testing,
as we describe in Section 4.

Whereas a postcondition expresses a require-
ment on the behavior of an individual method,
a transient property can be seen as a require-
ment on the behavior of an entire object. It is
the responsibility of the object implementor to
guarantee that the predicate does not remain
true forever. Clearly there are some transient
properties that cannot be implemented. The
most basic example is transient.true. This
is similar to writing false as a method post-
condition. Perhaps a more subtle example of
a transient property that cannot be imple-
mented is the following:

transient.(—delp(m))

This property requires the object to guaran-
tee that eventually one of its methods (in this
case m) is invoked by some other object. No
implementation can unilaterally guarantee this
behavior, however, as it will depend on the be-
havior of the system in which it is placed.

In practice, transient properties arise in
the description of behavior at mixed nodes and
are implemented in primarily one of two (sim-
ilar) ways. One way is to use a time-out. If
the mixed node is due to a nondeterministic
interaction with the environment (e.g., a user,
a sensor, or a possibly faulty device), then a
time-out can be used to guarantee that even-
tually a message is sent. A second way is to
use multithreading and synchronization. If the
mixed node is due to a lengthy computation

that may or may not be interrupted by the
arrival of new information, then multithread-
ing can be used to implement the computation
and simultaneous reception of other messages.
The correctness of the transient property in
this case is ensured by the termination of the
lengthy computation.

4 Testing and Debugging
Liveness

One implication of the definition of safety prop-
erties is that they can be violated by a finite ex-
ecution. For example, the safety property that
an object never enters state “Invalid” is vio-
lated by any finite computation in which the
object does enter this state. The safety prop-
erty captured by a precondition and postcon-
dition specification is violated by an execution
in which the method is called with the proper
precondition but fails to satisfy the required
postcondition. Safety properties can therefore
be tested at run-time. If a safety property is
violated, an exception can be raised, an error
message can be displayed, the program can be
aborted, or some other action can be taken.

Liveness properties, on the other hand, can-
not be violated by any finite execution. In-
formally, even if a liveness property does not
hold for some finite execution, there is a con-
tinuation of that execution for which it does
hold. For example, if a liveness property re-
quires that an object eventually exits the state
“Working”, how long do we wait for this to oc-
cur? It is therefore not possible to detect, at
run-time, the violation of a liveness property.

It is possible, however, to detect when live-
ness has not been satisfied in a very long
time. Indeed, developers often have an intu-
ition about how long to wait for a liveness prop-
erty to be satisfied. At the same time, liveness
is a subtle requirement on object behavior and
it is common for developers to make mistakes
in this part of the implementation. It is there-
fore helpful to provide support for debugging a
program that appears to be violating a liveness
property.

In order to monitor the potential violation
of a transient property, we make use of a
time-stamped history. For example, consider

the property
transient.Working

By testing whether the predicate Working is
true after object creation and after the execu-
tion of each method, we can detect when the
predicate becomes true. When the predicate
becomes true, a time-stamp is stored for this
event. When the predicate becomes false, the
time-stamp is cleared. If the tester suspects a
lack of liveness in the program and aborts the
execution, the transient predicates can each
be examined to see which is currently true and
which have been true for the longest amount
of time. This gives the tester an indication of
where to look for the suspected error.

Notice that this testing methodology is con-
sistent with current practices for debugging a
lack of liveness. When deadlock is suspected,
developers frequently insert print statements in
an attempt to observe in which state their ap-
plication becomes deadlocked. When the pro-
gram appears to reach a fixed state, the execu-
tion is aborted and the fixed state is examined
in an attempt to unravel how this point was
reached. Our methodology automates this ad
hoc approach by collecting the required infor-
mation about which liveness requirements have
failed to be satisfied.

One subtlety in the collection of this infor-
mation is in how to handle the quantification
of transient properties. In the discussion
above, we have postulated maintaining a single
time-stamp history for each transient prop-
erty. Often, however, these properties are used
within a universal quantification. For example,
the requirement that the value of a variable z
eventually changes is written:

(Vk : ke IN : transient.(z = k))

This corresponds to an infinite number of
transient predicates:

transient.(z = 0) A transient.(z =1) A ---

Clearly, keeping a time-stamp for each of these
properties is not feasible.

To address this concern, we have defined
the notion of functional transience [28]. A
transient property is said to be functionally

transient when the truth of its predicate func-
tionally determines the values of the free vari-
ables involved. In the example given above, the
truth of the predicate x = k determines, as a
function of the component state (i.e., variable
x), the value of the free variable (i.e., k). In
general, a transient property with free vari-
ables taken from a set I and component vari-
ables taken from a set V has a predicate of the
form p.(I,V) and can be written as

(Vi : i€l : transient.(p.(I,V)))

This property is said to be functionally tran-
sient when:

(Vi:d€eI: (Af; = p(I,V) =>i=fi.V))
We also introduce a special syntax for function-
ally transient properties, writing them as?:

(,i:4i€l:i:=f.V) in transient.(p.(I,V))

For example, this notation allows us to write
the quantification

(Vk : keN:
transient.(Working A metric = k))

as

(k := metric)
intransient.(Working A metric = k)

instead. The advantage of this notation is that
it makes explicit the functional dependence of
the free variables on the component state.

The utility of functional transience lies in the
simplicity of detecting whether it has been sat-
isfied. A functionally transient property is sat-
isfied when either the values of the free vari-
ables change or the predicate becomes false for
any value of free variables. In the previous
example, the transience requirement is satis-
fied by metric changing (and hence the value
of k changing) or by the predicate Working
becoming false. This reduces the number of
time-stamp histories from an impractical num-
ber (one for each possible value of metric) to
simply one. The implementation of this detec-
tion scheme is described in the following sec-
tion.

2This quantification indicates a list of expressions
(one for each free variable) separated by commas. Each
expression is of the form ¢ := f;.V .

5 An Augmentation of
CORBA IDL

Our liveness specification and debugging mech-
anism is realized in the context of CORBA. The
CORBA standard for distributed object sys-
tems defines an implementation-language in-
dependent notation for describing interfaces
(IDL). We extend this notation with keywords
that allow the specification of liveness based on
the notions of transience and functional tran-
sience as discussed above.

First, the interface of an object in CORBA
IDL does not contain any instance data. The
predicates that are transient, however, are
predicates on the object state (i.e., instance
data). Since requiring an object to export its
instance data in the interface would be a vio-
lation of encapsulation, we instead require the
interface to contain a description of an abstract
state. For example, the IDL specification of a
Worker object, augmented with abstract state,
is given in Figure 3. (The use of pragmas to
extend the IDL language means that these ex-
tended interfaces remain compatible with stan-
dard CORBA implementations.)

interface Worker {
#pragma state enum {Idle, Working} current;
#pragma state long metric;

oneway void Job ();

};

Figure 3: Interface of Worker Object Extended
to Include State

The variables current and metric are ab-
stract. They are not actual instance variables
in the Worker object. Hence, the implemen-
tation of Worker must include functions that
calculate these abstract variables from the ac-
tual object state. In the spirit of CORBA IDL,
the signature of these functions is automati-
cally generated, but the functionality must be
completed by the programmer. The skeleton
for the implementation of the Worker object
along with the structure that represents its ab-
stract state is given in Figure 4.

Liveness properties are given in terms of this

class WorkerState {
private: //abstract state variables
enum {Idle, Working} current;
long metric;

public:
void evaluate_state (const Worker& x) {
//programmer implements this function
//to calculate the abstract state
}
};

class Worker {
private:
WorkerState abstract_state;

public:
void Job OO {
//programmer implements this function
}
3

Figure 4: Implementation of Worker Object
Extended to Include Abstract State

abstract state. For the Worker object, a simple
transient property might be that the object
does not remain in the Working state forever.
Again, a pragma primitive is used to extend
the IDL notation. See Figure 5.

interface Worker {
#pragma state enum {Idle, Working} current;
#pragma state long metric;
#pragma transient.(current == Working)

oneway void Job ();

};

Figure 5: Interface of Worker Object Extended
to Include Transient Property

The time-stamp history required to monitor
transience is implemented by a structure with
three components: a pointer to the predicate
(i.e., a function on the abstract state that re-
turns a boolean), whether or not the predicate
currently holds, and the time-stamp when the
predicate last became true. The structure used
to implement this history is given in Figure 6.

The initialize() function is called when the
object is first created and the update() func-
tion is called at the end of every object method.

template <class State>
struct TransientPredicate {
bool holds;
long time_stamp;
bool (*predicate) (const State&);

void initialize(const State& data) {
holds = (*predicate) (data);
if (holds)
time_stamp = get_current_time();

}

void update(const State& data) {
bool b = (*predicate) (data);
if (!holds && b)
time_stamp = get_current_time();
holds = b;
}
};

Figure 6: Data Structure for Maintaining
Time-Stamp History

The time-stamp structure described in Fig-
ures 4 and 6 can be used to detect lack of tran-
sience in any unquantified transient certifi-
cate. These examples rely on the presence of
a single well-defined predicate on the abstract
local state of the component.

In the case of quantified transience, however,
such a predicate does not exist. Recall the ex-
ample of Section 4 where the requirement that
the value of = eventually changes was given by
the quantified expression:

(Vk : k€N : transient.(z = k))

In order to reduce the number of predicates
of interest to a tractable number, the concept
of functional transience was introduced. With
functional transience, the value of the abstract
state (in this case z) that makes the predicate
(in this case = = k) true functionally deter-
mines the value of the free variable (in this case
k). Special syntax was introduced in Section 4
to express functional transience. We include
similar notation for functional transience in our
pragma-based extensions to IDL.

For example, consider a Worker component
with a metric value that is guaranteed to
change so long as the Worker remains in the
Working state. This property is expressed in
the IDL given in Figure 7

interface Worker {
#pragma state enum {Idle, Working} current;
#pragma state long metric;
#pragma (k := metric) \
in transient. (
&& (metric == k))

oneway void Job ();

};

Figure 7: Interface of Worker Object With a
Functional Transient Property

The structure required for testing transience
given in Figure 6 can be extended to support
the testing of functional transience. For a func-
tional transient predicate property with a sin-
gle free variable of type long (as illustrated by
the previous example), this extension is given
in Figure 8.

A function (called dummies()) is introduced
to calculate the value of the free variable from
abstract local state of the component. In this
example, this function returns a long integer
value. For functional transient expressions with
multiple free variables, a further generic class is
added to the template instantiation to specify
the appropriate structure containing a set of
values.

One benefit of functional transience nota-
tion is that writing the code for the dummies ()
function is trivial in any system. The imple-
mentation of the function is given by the first
clause of the property expressed in the IDL
(i.e., k := metric). The implementation is
given in Figure 9.

In most examples, the code for determining
the value for the free variable will be no more
complicated than this. In fact, the tool itself
could be augmented to provide this function-
ality using only the transient certificate in the
IDL file.

It is important to note that the code given
in Figures 4, 6, 7, and 8 can be generated
automatically from the IDL definition of the

(current == Working)\

template <class State>
struct FunctionalTransientPredicate {
bool holds;
long time_stamp;
long free_var;
long (*dummies) (const Statek);
bool (*predicate) (const State&, int);

void initialize(const State& data) {
free_var = (*dummies) (data);
holds = (*predicate) (data);
if (holds)
time_stamp = get_current_time();

}

void update(const State& data) {
int v = (*dummies) (data);
bool b = (*predicate) (data, v);
if (('holds && b)

|l ((v '= free_var) && b))
time_stamp = get_current_time();

holds = b;
free_var = v;

}

};

Figure 8: Data Structure for Functional Tran-
sience

long dummies (const WorkerState& abs_state) {
return abs_state.metric;

}

Figure 9: Calculation of a Free Variable for
Functional Transience

Worker object. In fact, this automatic genera-
tion of skeleton code from the IDL definition is
consistent with the typical development cycle
for CORBA applications.

The preliminary design of our tool is an ex-
tension of the ORBacus [21] implementation of
the CORBA 2.0 standard. The tool will use
a two-pass approach to create the necessary
data and control structures for recording the
required information for the transient certifi-
cates provided in the IDL file. The first pass
will create the structures and files required by
the tool and the second pass will create the
skeleton code that must be completed by the

programmer. The pragma extensions will be
implemented as extensions to the yacc gram-
mar used by ORBacus to parse IDL files.

We are currently prototyping the fundamen-
tal structures that will be used by the tool
to generate the appropriate skeletons from ex-
tended IDL descriptions. We have devised a
suite of examples, of increasing levels of com-
plexity, to be used as a testbed for the tool.
All of these examples pertain to various imple-
mentations (and specifications) of a distributed
auction.

6 Related Work

Semantic extensions to interface definitions for
distributed objects are not new. The definition
in CORBA of an implementation language-
independent notation for defining interfaces is
a particularly attractive vehicle for semantic
specification constructs. It is not surprising,
then, that several proposals have been made
to extend CORBA IDL. The Object Manage-
ment Group, originators of the CORBA stan-
dard, have formed a working group to inves-
tigate different proposals for semantic exten-
sions. ADL [25] is an assertional extension
of CORBA IDL developed at Sun Microsys-
tems. Larch [10] is a two-tiered specification
language that has been applied to a variety of
implementation languages, including CORBA
[27]. AssertMate [23] is a preprocessor that al-
lows assertions to be embedded in Java meth-
ods. Another recent example is the Biscotti [7]
extension to Java RMI. This extension intro-
duces some new keywords that allow program-
mers to embed preconditions, postconditions,
and invariants in Java remote interfaces. The
usual Java exception mechanism can then be
used to signal violations of any of these asser-
tions. Our approach differs from this body of
work in its capacity to express liveness proper-
ties and hence its applicability to reactive and
peer-to-peer distributed systems.

The notions of safety and liveness were
first identified by Lamport [13]. The ability
to express any property as a combination of
safety and liveness was later established by
Alpern and Schneider [2]. Temporal specifica-
tions in the spirit of “design-by-contract” have

been developed to express component behav-
ior contingent on the behavior of the larger
system. FExamples of this approach include:
rely-guarantee [11], hypothesis-conclusion [4],
assumption-commitment [6], offers-using [12],
modified rely-guarantee [16], and assumption-
guarantee [1]. Our approach differs from this
body of work in our emphasis on testing. Be-
cause liveness properties are restricted to lo-
cal predicates, we are able to monitor whether
these liveness properties are being satisfied.

Our approach to the specification and testing
of distributed systems is similar in philosophy
to the extensions proposed to the Object Con-
straint Language in [24]. These extensions also
capture both safety and liveness and are de-
signed to permit testing of the specifications.
Two principal differences are: (i) our explicit
inclusion of quantification in the specification
notation, and (ii) our integration of the spec-
ification with the usual CORBA development
cycle (i.e., the parsing of IDL files to produce
skeleton code).

7 Conclusion

We have presented a method for specifying
component liveness properties in a distributed
system. This method is based on a single sim-
ple temporal operator: transient. With a
pragma-based extension of CORBA IDL, tran-
sient properties are expressed as part of an ob-
ject interface. Furthermore, this augmented in-
terface specification can be used to generate a
testing harness that monitors whether or not
the specified liveness properties are satisfied.
Testing the specified properties is feasible be-
cause the predicates involved are restricted to
the local state of a single object.

Our approach has the same fundamental lim-
itation as any testing strategy: Testing can
never be used to show the correctness of an im-
plementation, only the presence of errors. The
same is true of our tool, which can never be
used to establish that a particular implementa-
tion will always satisfy a given transient prop-
erty. Despite this limitation, testing is an im-
portant part of the software development cycle
because it is a practical method to increase con-
fidence in the correctness of an implementation.

Beyond this fundamental limitation of soft-
ware testing, the testing of liveness properties
is further frustrated by the very nature of these
properties: A liveness property cannot be vio-
lated by a finite trace. Our tool, therefore, can
only be used to detect the potential violation
of a liveness property. The accuracy of this de-
tection relies on the developer’s intuition about
how quickly a particular transient property is
expected to hold. If transience occurs more
slowly than expected, spurious violations will
be reported. On the other hand, if transience
occurs more quickly than expected, deadlock
situations will take longer to detect. We be-
lieve that, in practice, developers often have a
reasonable intuition on this matter and will use
our tool with conservative estimates.

We have not addressed the specification of
safety properties. Our approach, however, is
consistent with the many assertional methods
that do capture safety. The transient oper-
ator can be easily integrated with the precon-
dition and postcondition based approaches to
provide a more expressive specification nota-
tion, while retaining the ability to test for vio-
lations of the specification.

About the Authors

Paul Sivilotti is an Assistant Professor in the
Department of Computer and Information Sci-
ence at The Ohio State University. He received
his B.Sc.H. degree from Queen’s University in
1991 and his M.S. and Ph.D. degrees from Cal-
tech in 1993 and 1998 respectively. He has
been a recipient of an NSERC ’67 Fellowship
as well as an IBM Cooperative Computer Sci-
ence Fellowship. He can be reached by e-mail
at paolo@cis.ohio-state.edu.

Charles Giles is a graduate student in the
department of Computer and Information Sci-
ence at The Ohio State University. He can be
reached at 395 Dreese Laboratories 2015 Neil
Ave. Columbus, OH 43210. His Internet ad-
dress is giles@cis.ohio-state.edu.

References

[1] Martin Abadi and Leslie Lamport. Com-
posing specifications. ACM Transactions

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

on Programming Languages and Systems,
15(1):73-132, January 1993.

B. Alpern and F. B. Schneider. Defining
liveness. Information Processing Letters,
21(4):181-185, October 1985.

Daniel Brand and Pitro Zafiropulo.
On communicating finite-state machines.
Journal of the ACM, 30(2):323-342, April
1983.

K. Mani Chandy and Jayadev Misra.
Parallel Program Design: A Founda-
tion. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1988.

K. Mani Chandy and Beverly A. Sanders.
Predicate transformers
for reasoning about concurrent computa-

tion. Science of Computer Programming,
24(2):129-148, April 1995.

Pierre Collette. Composition of
assumption-commitment specifications in
a UNITY style. Science of Computer Pro-
gramming, 23:107-125, December 1994.

Cynthia Della Torre Cicalese and Shmuel
Rotenstreich. Behavioral specification of
distributed software component interfaces.
Computer, 32(7):46-53, July 1999.

Guy Eddon and Henry Eddon. Inside
Distributed COM. Microsoft Press, April
1998.

M. Gouda, E. Manning, and Y. T. Yu. On
the progress of communication between
two finite state machines. Information and
Control, 63:200-216, April 1983.

John V. Guttag, James J. Horning, S. J.
Garland, K. D. Jones, A. Modet, and
J. M. Wing. Larch: Languages and Tools
for Formal Specification. Springer-Verlag,
New York, New York, 1993.

C. B. Jones. Tentative steps toward a
development method for interfering pro-
grams. ACM Transactions on Program-
ming Languages and Systems, 5(4):596—
619, 1983.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. S. Lam and A. U. Shankar. A theory
of interfaces and modules 1: Composition
theorem. IEEE Transactions on Software
Engineering, 20(1):55-71, January 1994.

Leslie Lamport. Proving the correctness
of multiprocess programs. IEEE Trans-
actions on Software FEngineering, SE-
3(2):125-143, March 1977.

Leslie Lamport. A theorem on atomicity in
distributed algorithms. Distributed Com-
puting, 4(2):59-68, 1990.

Zohar Manna and Amir Pnueli. The
Temporal Logic of Reactive and Concur-
rent Systems, volume 1. Specification.
Springer-Verlag, 175 Fifth Avenue, New
York, New York 10010, 1992.

Rajit Manohar and Paolo A. G. Sivilotti.
Composing processes using modified rely-
guarantee specifications. Technical Re-
port CS-TR-96-22, Computer Science De-
partment, California Institute of Technol-
ogy, 256-80 Caltech, Pasadena, California
91125, June 1996.

Bertrand Meyer. Eiffel: The Lan-
guage. Object-Oriented Series. Prentice-
Hall, 1992. second revised printing.

Bertrand Meyer. Object-Oriented Software
Construction. Prentice-Hall, Upper Sad-
dle River, New Jersey 07458, second edi-
tion, 1997.

Jayadev Misra. A logic for concurrent pro-
gramming: Progress. Journal of Com-
puter & Software Engineering, 3(2):273—
300, 1995.

Object Management Group. The Common
Object Request Broker: Architecture and
Specification, February 1998. Revision 2.2.

Object-Oriented Concepts, Inc. ORBacus
For C++ and Java. Version 3.1.

Robert Orfali and
Dan Harkey. Client/Server Programming
with Java and CORBA. Wiley Computer
Publishing, New York, New York, second
edition, 1998.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

J. E. Payne, M. A. Schatz, and M. N.
Schmid. Implementing assertions for java.
Dr. Dobb’s Journal, January 1998.

Sita Ramakrishnan and John D. McGre-
gor. Extending OCL to support temporal
operators. In Workshop on Testing Dis-
tributed Component-Based Systems, May
1999. part of the 21st International Con-
ference on Software Engineering (ICSE).

Sriram Sankar and Roger Hayes. ADL — an
interface definition language for specifying
and testing software. ACM SIGPLAN No-
tices, 29(8):13-21, August 1994.

A. Udaya Shankar. An introduction to as-
sertional reasoning for concurrent systems.
ACM Computing Surveys, 25(3):225-262,
September 1993.

Gowri Sandar Sivaprasad.
Larch/CORBA: Specifying the behavior of
CORBA-IDL interfaces. Master’s thesis,
Towa State University, 226 Atanasoff Hall,
Ames, Towa 50011-1040, November 1995.
TR #95-27.

Paolo A. G. Sivilotti. A Method for the
Specification, Composition, and Testing of
Distributed Object Systems. PhD thesis,
California Institute of Technology, 256-80
Caltech, Pasadena, California 91125, De-
cember 1997. Available as CS-TR-97-31.

Paolo A. G. Sivilotti. A class of syn-
chronization systems that permit the use
of large atomic blocks. In Stephen A.
MacKay and J Howard Johnson, editors,
Proceedings of CASCON 98, pages 26—
39, Toronto, Ontario, Canada, November
1998.

Sun Microsystems, Inc., 2550 Garcia Av-
enue, Mountain View, California 94043-
1100. Java Remote Method Invocation
Specification, revision 1.5 edition, October
1998.

Daniel M. Yellin and Robert E. Strom.
Protocol specifications and component
adaptors. ACM Transactions on Program-
ming Languages and Systems, 19(2):292—
333, March 1997.

