
Synchronization Systems that
Permit the Use of Large
Atomic Blocks

Paul Sivilotti
Computer and Information Science

Ohio State University
paolo@cis.ohio-state.edu

Outline

■ Utility of implicit atomic blocks.

■ Background and related work.

■ Main result: theorem of equivalence.
➤ three refinement conditions

■ Application of result to current systems.

■ Implications for design of synchronization
systems.

Atomic Blocks

Multiple Threads of Execution

Atomic Block

Waiting

Executing

Atomic Blocks

■ Atomic block: execution is not interleaved
with other actions.

■ Atomic blocks are useful:
➤critical sections requiring mutual exclusion

➤simplify reasoning about the system

■ One implementation: acquire/release locks.
lock.acquire();

//atomic block

lock.release();

■ Expensive in large systems.

Implicit Atomic Blocks

■ Some blocks appear to be atomic.
➤e.g., a block that manipulates local data only

(no sends or receives to other processes)

➤ intermediate states are not externally visible

■ It is impossible to distinguish the case
where such a block executes atomically
from those where it does not.

Example: Program Simple

p1:

? x
int a = x + 1
! a
int b = a * a
! b

p2:

int y = 5
! y

? y1
? y2

Example: Program Simpleatomic

p1atomic:
<

? x
int a = x + 1
! a
int b = a * a
! b

>

p2atomic:
<

int y = 5
! y

>
? y1
? y2

Informal Rule

■ “A receive action, followed by any number
of send and/or internal actions, can be
treated as an atomic block of code.”

p:
receive action;
send and local actions;

Informal Rule

■ “A receive action, followed by any number
of send and/or internal actions, can be
treated as an atomic block of code.”

p:
receive action;
send and local actions;

patomic:
< receive action;

send and local actions;
>

Informal Rule

■ “A receive action, followed by any number
of send and/or internal actions, can be
treated as an atomic block of code.”

■ Any property of patomic is a property of p.

■ Intuition: other actions not visible.

p:
receive action;
send and local actions;

patomic:
< receive action;

send and local actions;
>

Utility of Informal Rule

■ Given a general program, reason about it as
if the blocks are atomic.

■ If the atomic program is correct,
the general program is correct too!

■ Atomic program easier to reason about
(fewer interleavings).

Research Question

■ When is this informal rule sound?
➤patomic is correct ==> p is correct

■ What are the requirements on the
synchronization system to permit such
blocks to be implicitly considered atomic?
➤ i.e., what kinds of “receive actions” and “send

actions” are needed for this rule to be sound?

➤e.g., in program “Simple” , messages are
delivered in order

Example: Program Simpleatomic

p1atomic:
<

? x
int a = x + 1
! a
int b = a * a
! b

>

p2atomic:
<

int y = 5
! y

>
? y1
? y2

Model of Computation

■ Many threads of control.

■ Each has local storage.
➤not externally visible

➤ “ local actions” change this storage

■ Share a common storage, by which the
threads communicate.
➤message-passing layer

➤semaphores

Model of Computation (cont’d)

■ Two actions for changing the shared state:
➤an action that cannot suspend

– “send” or “write” action

– denoted by !

➤an action that can suspend (synchronization)
– “ receive” or “ read” action

– denoted by ?

■ There are other models.

Related Work: Action Systems

■ Lipton and Lamport have considered this
problem in the context of action systems.

■ Actions map initial states to final states.

■ Proved the soundness of a related rule:
➤send actions must commute

➤ receive actions must “right commute” with send
actions on other processes.

Our Contribution

■ Action system approach has not considered
actions that may or may not terminate.

■ Our approach:
➤based on weakest precondition semantics

➤considers actions that may or may not terminate

■ Discovery: weaker conditions on send and
receive actions.

Computations and Refinement

■ A program yields a set of computations.

■ Nondeterministic choice within this set.

■ A program satisfies a property only if all the
possible computations satisfy that property.

■ Must establish: subset inclusion.
➤set of general computations is a subset of the

set of atomic ones

■ Follows from three conditions...

Refinement Condition 1

■ Sends commute.
➤ the order of two send actions on different

processes can be exchanged with no effect.

! x
! y

p q

! x
! y

p q

=

Implications of Condition 1

■ Excludes sharing of channels by senders.
➤broadcast, multicast, shared bus

■ Excludes undisciplined modification of
shared variables.
➤semaphore increment actions do commute

Refinement Condition 2

■ Receives are enabled-stable.
➤ if a receive action is enabled, it cannot be

disabled by a send on another process

p q

? x ! y

p q

? x
==>

Refinement Condition 3

■ Receives are send-monotonic.
➤a receive action, when swapped with a

preceding send action, yields the same (or
“stronger”) result

! y

p q

? x

p q

? x
! y ==>

Two Versions of Condition 3

■ Strong.
➤always required

■ Weak.
➤ required only when receive is guaranteed to

terminate

Refinement Conditions

■ Commuting sends
➤wlp.(p!;q!).Q ==> wlp.(q!;p!).Q

■ Enabled-stable receives
➤wp.p?.true ==> wp.(q!;p?).true

■ Weakly send-monotonic receives
➤wp.p?.true /\ wp.(q!.p?).Q ==> wlp.(p?;q!).Q

■ These conditions used to prove that atomic
computation is a refinement of general one.
➤ they are sufficient, not necessary

■ Three examples to consider:
➤probes

➤message passing with bounded buffers

➤shared monotonic counters

Probes:
A Dangerous Primitive

■ Send action sets a synchronization flag

■ Receive action is a probe:
➤when flag is set, returns true

➤otherwise, returns false

■ Condition 1: sends commute.

■ Condition 2: receives always enabled.

■ Condition 3: violated!

Example of Probes

p1:

! flag1
! flag2

p2:
repeat

skip
until (? flag1)
? flag2

could be true or false

Example of Probes

p1atomic:
<

! flag1
! flag2

>

p2atomic:
repeat

skip
until (? flag1)
? flag2

guaranteed to be true

M.P. with Bounded Channels:
A Dangerous Primitive

■ Channels with finite buffer size.

■ Two options for send when buffer is full:
➤suspend (until no longer full)

➤drop the message

■ Neither option meets the Refinement
Conditions!
➤sends must always be enabled

➤dropping message violates Condition 3

Example of Bounded
Channels

p1 p2
p1atomic:
<

? x
! y

>

p2atomic:
<

? y
! x

>

Example of Bounded
Channels

p1 p2
p1atomic:
<

? x
! y

>

p2atomic:
<

? y
! x

>

p1 p2 p1 p2

Example of Bounded
Channels

p1 p2
p1:

? x
! y

p2:

? y
! x

p1 p2 p1 p2

Example of Bounded
Channels

p1 p2
p1:

? x
! y

p2:

? y
! x

p1 p2

p1 p2

p1 p2

Solution for Bounded
Channels

■ Define send action to be nondeterministic
above a certain threshold.
➤e.g., for a buffer size of n, send is

nondeterministic when there are n-1 messages

➤nondeterministic send can change the state of
the channel arbitrarily

■ If the atomic computation does not exceed
this threshold, neither does the general one.

Monotonic Counters:
A Safe Primitive

■ Send action:
➤ increase a shared counter by some amount

➤sends commute

■ Receive action:
➤suspend until counter reaches some threshold

➤ returns a value equal to or less than the current
value of the counter.

Example of Monotonic
Counters

master :

for all i
! pi = pi + 1

? x >= 5

workeri :

? pi >= 1
solve subproblem i
! x = x + 1

Example of Monotonic
Counters

masteratomic :
<

for all i
! pi = pi + 1

>
? x >= 5

workeri
atomic :

<
? pi >= 1
solve subproblem i
! x = x + 1

>

Synchronization System
Design

■ Synch. system design is often ad hoc.
➤ familiarity, convenience, efficiency

■ Synchronization primitives must meet the
refinement conditions 1 - 3.
➤conditions are sufficient for safety properties.

■ If including dangerous primitives:
➤distinguish these primitives from safe ones

➤define a discipline making the primitives safe

➤have a good reason

Contact Information

Paul Sivilotti
Dept. of Computer and Information Science

Ohio State University

(614) 292-5835

paolo@cis.ohio-state.edu

Distinguishing Strong and
Weak Send-Monotonicity

■ Example:
➤ receive is nondeterministic when not enabled

(may return an arbitrary value or not terminate)

➤weakly send monotonic, but not strongly

■ Distinction disappears when receviesare:
➤deterministically terminating

➤nonmiraculous

weakly send-monotonic

strongly send-monotonic

x

