Synchronization Systems that
Permit the Use of Large
Atomic Blocks

Outline

Paul Sivilotti
Computer and Information Science
Ohio State University
paol o@i s. ohi o- st at e. edu

» Utility of implicit atomic blocks.
» Background and related work.
= Main result: theorem of equivalence.
0 three refinement conditions
= Application of result to current systems.

= Implications for design of synchronization
systems.

Atomic Blocks

Atomic Blocks

Multiple Threads of Execution

Executing

Waiting

Atomic Block

= Atomic block: execution is not interleaved
with other actions.
» Atomic blocks are useful:
0 critical sections requiring mutual exclusion
o simplify reasoning about the system
= One implementation: acquire/release locks.
| ock. acquire();

/1 atom c bl ock
| ock. rel ease();

» Expensiveintarge systems.

Implicit Atomic Blocks

Example: Program Simple

= Some blocks appear to be atomic.
0 e.g., ablock that manipulates local data only
(no sends or receives to other processes)
0 intermediate states are not externally visible
= Itisimpossible to distinguish the case
where such ablock executes atomically
from those where it does not.

pl: p2:
?x inty=5
inta=x+1 ly
la
intb=a*a 2yl
'b ?y2

Example: Program Simple, ;o mic

Informal Rule

= “A receive action, followed by any humber
of send and/or internal actions, can be

treated as an atomic block of code.”
p:

receive action;
send and local actions;

OHIO

Informal Rule

Plaomic: PZatomic:
< <
?x inty=5
inta=x+1 ly
la >
intb=a*a 2yl
b ?2y2
>
OHIO)
Informal Rule
= “A receive action, followed by any number
of send and/or internal actions, can be
treated as an atomic block of code.”
p: Patomic*
receive action; < receive action;
send and local actions; send and local actiong;
>
OHI)

= “A receive action, followed by any number
of send and/or internal actions, can be
treated as an atomic block of code.”

p:
receive action;
send and local actions;

Patomic*
< receive action;

send and local action

>

B/

m Any property of Pyomc iS @ property of p.
= Intuition: other actions not visible.

B |

Utility of Informal Rule

Research Question

= Given ageneral program, reason about it as
if the blocks are atomic.

n If the atomic programis correct,
the general program is correct too!

= Atomic program easier to reason about
(fewer interleavings).

= When isthisinformal rule sound?
0 Paomic IS COrTECt ==> pis correct
= What are the requirements on the
synchronization system to permit such
blocks to be implicitly considered atomic?
0i.e, what kinds of “receive actions’ and “send
actions’ are needed for this rule to be sound?
0 eg., in program “Simpl€’, messages are
delivered in order

OHIO
SIAIE

Example: Program Simple, ;o mic

platomic: pzatomic:

< <
?x inty=5
inta=x+1 ly
la >
intb=a*a 2yl
'b ?y2

>

Model of Computation (cont’d)

= Two actions for changing the shared state:
0 an action that cannot suspend
—"“send” or “write’ action
— denoted by !
0 an action that can suspend (synchronization)
—“receive” or “read” action
— denoted by ?
» There are other models.

iS)DI{‘{‘\Id
Ditesir]

Model of Computation

= Many threads of control.
» Each haslocal storage.
0 not externally visible
0 “local actions” change this storage
» Share a common storage, by which the
threads communicate.
0 message-passing layer
0 semaphores

OHIO

Related Work: Action Systems

» Lipton and Lamport have considered this
problem in the context of action systems.
= Actions map initial statesto final states.
= Proved the soundness of arelated rule:
0 send actions must commute

0 receive actions must “right commute” with send
actions on other processes.

Our Contribution

= Action system approach has not considered
actions that may or may not terminate.
= Our approach:
0 based on weakest precondition semantics
0 considers actions that may or may not terminate
» Discovery: weaker conditions on send and
receive actions.

Computations and Refinement

» A program yields a set of computations.

= Nondeterministic choice within this set.

» A program satisfies a property only if al the
possible computations satisfy that property.

= Must establish: subset inclusion.

0 set of general computationsis a subset of the
set of atomic ones

= Follows from three conditions...

OHIO

Refinement Condition 1

= Sends commute.

0 the order of two send actions on different
processes can be exchanged with no effect.

P q P q
|] |
I'x _ ly
ly I'x
[[
Refinement Condition 2
» Receives are enabled-stable.
0 if areceive action is enabled, it cannot be
disabled by a send on another process
P q p q
| | |
? X s . ly
[[

Implications of Condition 1

» Excludes sharing of channels by senders.
0 broadcast, multicast, shared bus
» Excludes undisciplined modification of
shared variables.
0 semaphore increment actions do commute

Refinement Condition 3

» Receives are send-monotonic.
0 areceive action, when swapped with a
preceding send action, yields the same (or
“stronger”) result

==>

Two Versions of Condition 3

Refinement Conditions

= Strong.
0 always required
n Weak.

0 required only when receive is guaranteed to
terminate

= Commuting sends
owlp.(p}g).Q ==> wip.(q!;p!).Q

= Enabled-stable receives
0 wp.p?true ==> wp.(q!;p?).true

= Weakly send-monotonic receives
owp.p?true A wp.(g!.p?).Q ==> wlp.(p2q").Q

» These conditions used to prove that atomic

computation is a refinement of general one.

0 they are sufficient, not necessary
» Three examplesto consider:
0 probes
0 message passing with bounded buffers
0 shared monotonic counters

ool
Example of Probes
pl: p2:
repeat
! flagl skip
! flag2 until (? flagl)
_? flag2
could be true or false
orHio)

B |

Probes:
A Dangerous Primitive

= Send action sets a synchronization flag
= Receive action is a probe:

0 when flag is st, returns true

0 otherwise, returns false
= Condition 1: sends commute.
= Condition 2: receives always enabled.
= Condition 3: violated!

M.P. with Bounded Channels:

A Dangerous Primitive

» Channels with finite buffer size.
= Two options for send when buffer isfull:
0 suspend (until no longer full)
0 drop the message
= Neither option meets the Refinement
Conditions!
0 sends must always be enabled
0 dropping message violates Condition 3

OHI])
Example of Probes
platomic: pzatomic:
< repeat
! flagl skip
! flag2 until (? flag1)
> , ? flag2
guaranteed to be true
orid)
Example of Bounded
Channels
Platomic PZatomic:
< <
?X] 7y
ly I'x
> >
OHI])
STATE

Example of Bounded Example of Bounded
Channels Channels
PLatomic r P2utomic’ pl:
) ?x @) ?y ? X
ly I'x ly
> >
oWRC -
- & —m & i
SAE o
Example of Bounded Solution for Bounded
Channels Channels
: > = Define send action to be nondeterministic
P P above a certain threshold.
?x ?y 0eg., for abuffer sizeof n, send is
'y 'x nondeterministic when there are n-1 messages
0 nondeterministic send can change the state of

the channel arbitrarily

- B
1) r » If the atomic computation does not exceed
m @ - m W m this threshold, neither does the general one.
pl p2

Monotonic Counters: Example of Monotonic
A Safe Primitive Counters
= Send action:

0 increase a shared counter by some amount

0 sends commute master : worker':
= Receive action: foralli 2pi>=1 '

0 suspend until counter reaches some threshold tpEpial ,S‘)’(l‘fxsflipmblem !

0 returns avalue equal to or less than the current ?x>=5

value of the counter.

Example of Monotonic
Counters

master,,omic : workerl, .
< <
for all i ?pi>=1
Ipi=pi+1 solve subproblem|
N Ix=x+1
?x>=5 >

Contact Information

Paul Sivilotti
Dept. of Computer and Information Science
Ohio State University

(614) 292-5835

paol o@cis.ohio-state.edu

iS)DI{‘{‘\Id
Ditesir]

Synchronization System
Design

= Synch. system design is often ad hoc.

o familiarity, convenience, efficiency
Synchronization primitives must meet the
refinement conditions 1 - 3.

0 conditions are sufficient for safety properties.
» If including dangerous primitives:

0 distinguish these primitives from safe ones
0 define a discipline making the primitives safe

= have 3 aood

tHav € gooaTEason

OHIO

Distinguishing Strong and
Weak Send-Monotonicity

weakly send-monotonic
strongly send-monotonic
= Example:

0 receive is nondeterministic when not enabled
(may return an arbitrary value or not terminate)

0 weakly send monotonic, but not strongly
= Distinction disappears when recevies are:
0 deterministically terminating

nanmiracHlon

=) o
CHormracurous

