A Class of Synchronization Systems that Permit the Use of

Large Atomic Blocks

Paolo A.G. Swilotti *
Department of Computer and Information Science
The Ohio State University
2015 Neil Ave., Columbus, OH 43210-1277, USA

Abstract

This paper revisits the formal justification of a
common practice used in formal and informal
reasoning about distributed systems: consid-
ering certain sections of code to be implicitly
atomic. This practice is extremely useful as it
allows distributed and concurrent programs to
be developed, tested, and verified with large
atomic blocks, yet executed with a much finer
granularity of parallelism for efficiency. We
expose the elements on which this practice is
based and characterize the synchronization sys-
tems for which this practice is valid. Unlike
previous justifications for this practice, our ap-
proach is based on a weakest precondition se-
mantics. Owing to the generality of our model
of computation, the result is applicable to both
distributed-memory and shared-memory sys-
tems.

1 Introduction

An atomic block of code is a sequence of actions
with which other actions are not interleaved.
Atomic blocks are useful in distributed compu-
tations because they allow us to reason about
a section of code in isolation, without interfer-
ence from other concurrent threads of execu-
tion. Pragmatically, atomic blocks of code are
useful because they reduce the number of inter-
leavings that must be considered. It is no sur-
prise, then, that large atomic blocks are helpful
for reasoning.

*This work was partially funded by an IBM Coop-
erative Computer Science Fellowship.

Atomic blocks of code are limited in size by
the synchronization structure of the applica-
tion. In particular, a synchronization operation
is not permitted to suspend inside an atomic
block, since this would result in deadlock. In
effect, a suspension must correspond to the ter-
mination of the enclosing atomic block.! A
common and intuitive practice when reason-
ing about distributed systems is to consider
a blocking receive operation as the beginning
of an atomic block, followed by all the sends
and local actions performed by that process.
We precisely characterize a class of synchro-
nization systems where this practice is valid.
This class includes such common paradigms as
distributed memory message-passing over first-
in first-out channels with blocking receive, and
shared memory unbounded semaphores. Our
formal characterization allows us to observe
that this practice also applies to some less intu-
itive paradigms, such as shared-memory mono-
tonic counters.

The rest of the paper is organized as fol-
lows: Section 2 presents a motivating example
of how the implicit creation of atomic blocks
simplifies reasoning about an application; Sec-
tion 3 points to some related work, contrast-
ing it with our own approach; Section 4 defines
our generic model of computation; Section 5 in-
troduces notation and terminology concerning
traces; Section 6 introduces notation and ter-
minology concerning computations; Section 7
states and proves the theorem and corollary
that are the central results of this paper; Sec-

!For example, a Java wait operation inside a syn-
chronized block releases the associated lock, terminat-
ing the atomic block.

tion 8 illustrates the application of the the-
orem to several real synchronization systems;
and Section 9 concludes.

2 DMotivating Example:
The Gossip Algorithm

The gossip algorithm is a simple implementa-
tion of a diffusing computation [4, 12]. It can
be used to synchronize a collection of processes.
Informally, the gossip algorithm uses an ex-
panding wave to include all processes, followed
by a contracting wave to signal that all pro-
cesses were included.

The algorithm for a single process in this
computation is given in Figure 1. Sends are de-
noted by “!” and receives by “?”. Each process
has a set N of neighbouring processes with
which it can exchange messages. In the first
line of the program, the process waits to receive
a message from any neighbour. The sender of
this message (once it is received) becomes this
process’s parent. In line 2, all neighbours that
are not the parent are sent a message (i.e. the
“gossip”). In line 3, the process waits to hear a
reply back from each of the neighbours from
line 2. Once all these replies have been re-
ceived, the process replies to its parent.

?parent
(Ve: ceN A c # parent : lc)
(Ve: ceN A c # parent : 7c)
Iparent

BN =

Figure 1: Gossip Algorithm

The computation begins when a special pro-
cess, known as the initiator, sends a message
to a process in the collection. This message
is passed along from parent to children until
all processes have been included in the gossip.
Only once all process have been included can
the second phase begin, where acknowledge-
ments are sent from children back to parents.

One of the difficulties in reasoning about this
computation is that many parents can be send-
ing messages to many (even the same) chil-
dren at the same time. Consider a process
¢ with two neighbours p; and pg, both of

which have heard the gossip. There are two
messages on the way to ¢, one from each of
p; and pg . Depending on which arrives first,
one of these processes will be ¢’s parent. Can
the other message be received as an acknowl-
edgement from a child? What if there is only
one message on the way, as the other potential
parent hasn’t yet sent the gossip on? Is this
implementation correct despite this nondeter-
minism? Perhaps surprisingly, this distinction
turns out not to matter for the correctness of
the algorithm. Seeing that this is so, however,
requires some careful thought.

Now consider a modification to the original
gossip algorithm, given in Figure 2. The mod-
ification is to create an atomic block, denoted
by (...). This block allows us to treat the re-
ception of the message from the parent and the
sending of messages out to other neighbours as
a single atomic action.

?parent
(Ve: ce€N A c # parent : lc)

(Ve: ceN A c # parent : ?c)
Iparent

DU W N

Figure 2: Gossip Algorithm With Atomic
Block

In general, larger atomic blocks allow us to
state stronger invariants. This is because the
states inside an atomic block are not observ-
able, and so can violate the invariant, so long
as its validity is restored prior to termination
of the block. For example, an invariant of the
modified gossip algorithm (but not of the orig-
inal version) is that all processes that have a
parent have sent messages out to all their other
neighbours.

A general heuristic is that stronger invariants
simplify the task of establishing the correctness
of a computation. Indeed, it is relatively easier
to visualize the progress of the modified gos-
sip algorithm as processes are added as leaves
to a growing tree of parents, where the act of
becoming a leaf also corresponds to the distri-
bution of messages to all other neighbours.

Interestingly, this modified program is equiv-

alent to the original. We can therefore reason
about the correctness of the original by rea-
soning about the correctness of the modified
version. This process of increasing the size of
atomic blocks can be extremely useful, there-
fore, if it preserves the semantics of the pro-
gram. This paper addresses the following ques-
tion: Under what conditions is such a modifi-
cation valid?

3 Related Work

The problem of reasoning about a concurrent
program by considering a program with larger
atomic blocks was first formally addressed by
Lipton [10]. His approach was to classify ac-
tions as “right movers” and “left movers”,
which is the core of the proof of our theorem
as well. Lipton’s reduction method considers
partial correctness only, however, while we use
total correctness. Also, Lipton’s main result is
for “PV parallel programs” (i.e., semaphore-
based programs), whereas our result applies
more generally to any synchronization system
with a pair of synchronization primitives. We
use our result to analyze a collection of syn-
chronization paradigms, including semaphores.

Lipton’s results were extended by Doeppner
[6] to a larger class of safety properties, then
further generalized by Lamport and Schneider
[8] to the general class of safety properties,
namely invariants. They generalize the notion
of atomicity by introducing a predicate €(A)
(for “external”) that holds when control is out-
side of an atomic action A. This predicate
characterizes when an invariant is required to
hold. Lamport [7] further generalizes the result
to include progress properties by introducing
fairness requirements.

Our approach differs from these results in
several ways. First, we use a weakest precondi-
tion [3, 5] semantics, while the work cited above
uses a next-state transition system semantics.
Our approach is therefore more general as we
consider actions that nondeterministically may
or may not terminate, a behaviour which was
not examined by these authors.? The distinc-
tion between our main theorem and its corol-

21t is possible to model such behaviour in next-state
transition sytems by the introduction of a special state,
often denoted oo or L. The introduction of such a

lary, for example, is lost if such nondeterminis-
tic actions are not considered (and hence this
distinction did not appear in the work cited
above). Second, we base our approach on total
correctness as a semantic definition of a pro-
gram, rather than safety properties. Although
this restricts our results to programs with a pre-
condition and postcondition specification (as
opposed to reactive programs [11] such as op-
erating systems), it allows us to use the tra-
ditional refinement calculus [1, 14, 13] as the
foundation for our proof.

Our work is perhaps closest in spirit to
Back’s extension of the refinement calculus
to include concurrent action systems [2]. He
presents sufficient conditions for permitting the
refinement of a concurrent algorithm. Our
work is similar to this extension of the re-
finement calculus in that both use weakest
precondition semantics, both consider nonde-
terministic actions that may or may not ter-
minate, and both preserve total correctness.
The focus of the refinement calculus, how-
ever, is on algorithms and on the development
of programs through a series of correctness-
preserving transformations. Qur emphasis
here, on the other hand, is on synchronization
systems and on the development of conditions
on synchronization primitives that guarantee
the correctness of a specific refinement step.
We use these conditions to examine a collection
of common (and some less common) synchro-
nization paradigms.

4 State, Shared State, and
Communication

A distributed system consists of a collection of
processes. Each process has an independent
thread of control and local data that is not vis-
ible outside the process. Communication and
synchronization is achieved through some ele-
ment of state that is shared by two or more pro-
cesses. We do not further qualify this shared
state. This is a very general model of pro-
cess communication, capturing shared memory
primitives (e.g. locks, semaphores, and single-
assignment, variables) as well as distributed

state, however, complicates the rule for composition
and was not done in the cited work.

memory primitives (e.g. ordered and unordered
channels with blocking and nonblocking re-
ceives). Nor do we subdivide this shared state;
a collection of processes has a single pool of
shared state. For example, the sending of a
message on a channel between two particu-
lar processes is viewed to modify the state of
the message-passing layer of the entire system.
This approach does not strengthen the result
of our theory, but it does permit a unified pre-
sentation.

The state of the system is the union of
the states of the individual processes and the
shared state. For example, the state of a
message-passing system is the local state of
each process and the state of the channels be-
tween processes.

An action that reads values from or writes
values to the shared state is called a synchro-
nization action. Such an action has an asso-
ciated enabling predicate that the shared state
must satisfy in order for the action to complete.
The enabling predicate of a synchronization ac-
tion S can be defined using weakest precon-
dition semantics [3, 5] as wp.S.true. In the
trace of the computation, the state immedi-
ately before the execution of a synchronization
action must meet that action’s enabling condi-
tion. For example, for a blocking receive on a
channel, the enabling condition is that there be
a delivered message in the channel.

Many synchronization systems consist of a
pair of such actions.® For example, a message-
passing system has send and receive operations,
a lock-based system has acquire and a release
operations, and a semaphore-based system has
increment and decrement operations. In order
to be considered a synchronization system, at
least one of these actions must have an enabling
predicate that is not identically true. We re-
strict our attention to such systems where one
action in the pair is always enabled, while the
other is not. The action that is always enabled
we call send (and denote by “!”), while the ac-
tion that is not necessarily enabled we call re-
cetve (and denote by “?”). An action that does

3 Although this is not strictly necessary. Consider
a token-swap operation that is enabled precisely when
either the process or the shared state contains the token.
It has the effect of flipping ownership of the token. This
system is equivalent in expressive ability to a message-
passing synchronization system.

not access the shared state we call local (and
denote by “#”). For the systems mentioned
above, “I” corresponds to sending a message,
releasing a lock, or incrementing a semaphore,
respectively.

5 Traces and Refinement

A trace is a sequence of actions. Each action
is performed by a process in the computation.
An action can either access the shared state
or it can be entirely local. Because we have
restricted attention to systems with only two
synchronization commands (send and receive),
an action that accesses the shared state is either
a send or a receive. Thus, a trace consists only
of sends, receives, and local actions.

Sends, receives, and local actions executed
by process p are denoted p!, p?, and p#
respectively. For a collection of processes 5,
the trace of a computation is projected to a
string in the language:

L= (Up:peS§: p?UplUp#)*

As in [9], we use U to separate alternative
items and * to mean a (possibly empty) se-
quence of items.

A trace maps the initial system state to a
set of possible final system states (the effect of
an action, hence a trace, can be nondetermin-
istic). We use weakest preconditions [3, 5] to
define trace semantics. Following the notation
of [5], wp.t.Q denotes the weakest precondi-
tion (i.e., the set of states from which trace ¢
is guaranteed to terminate in a state satisfying
Q), while wilp.t.Q denotes the weakest liberal
precondition (i.e., the set of states from which
trace t is guaranteed to either not terminate
or terminate in a state satisfying @). A trace
t is said to be refined by a trace t' if and only if
any specification satisfied by t is satisfied by
t' as well [13]. (Conversely, ¢' is said to re-
fine t.) Refinement is therefore a “correctness
preserving” process [14]. Denoting trace refine-
ment by C (read “refined by”), this can be
expressed more formally as:

tCt' = (VQ = [wp.t.Q = wp.t'.Q])

We make use of [] as “everywhere brackets”
[5], denoting universal quantification over the
state space.

An immediate consequence of this definition
is that trace refinement is transitive:

(rCs)A(sCt) = (rCt)

One way to prove that two traces are related
by refinement is to find a sequence of action
swaps that permutes one trace into the other.
By transitivity, if each action swap yields a re-
fined trace, the final trace is a refinement of
the initial one. We will use this technique to
establish our theorem.

6 Computations and Re-

finement

A computation is defined by a set of traces.
Given an initial state, a computation is mod-
eled as the nondeterministic choice of one of
the traces for execution from this initial state.
Thus, a computation maps an initial state to a
set of final states (the union of the possible final
states given by the traces of the computation).

A computation C is said to be refined by a
computation C' if and only if every trace in
C' is a refinement of a trace in C . Like trace
refinement, we denote computation refinement
by L . This symbol overloading is justified
by the following definition:

CCC' = (vt :tel:
(Jt:teC:tCTt))

See Figure 3 for an illustration of computation
refinement.

Refinement is a useful property because it
represents replaceability. Informally, anywhere
C can be used, C' can be used instead. Any
specification met by C is also met by C'.
This is especially useful if C is easier to rea-
son about than C'. In that case we can prove
that C' meets a specification by establishing
that C meets that specification.

Operationally, the traces of a computation
are formed by the nondeterministic selection
of an action for execution from a pool of en-
abled commands. Any action in the pool can
be selected. Furthermore, every action in the
pool is selected in some trace. That is, if some
subsequence of actions leads to a state satis-
fying wp.X.true, there must be a trace in the

. refined by .
Computation C —— = Computation C’

LTS t, ([T
. \>t; EEEN

™ o
ty LI]

Figure 3: Graphical Representation of a Com-
putation Refinement

computation with that subsequence as a prefix,
followed by X as the next action.

7 Theorem

7.1 Definitions of Send and Local
Actions

We begin with some properties that follow im-
mediately from our model of computation. In
fact, these properties can be taken as defini-
tions of the associated actions.

Sends are always enabled.

[wp.pl.true = true] 1)
Here we introduce the convention that any un-
bound dummy is implicitly universally quan-
tified over the natural domain. The equation
above holds for all processes p in the compu-
tation.

Local actions are not externally visible.
Let X denote any of the three possible actions

(send, receive, or local action, denoted !, 7,
and # respectively).
(Vg:q#0p
[wp.(pX; q#).Q = wp.(¢#;pX).Q])
(2)

Here we introduce the symbol ; to represent
sequential composition of actions.

7.2 Nomenclature and Properties

Before stating the theorem, the following
nomenclature is introduced to facilitate the
presentation.

Atomic Computations. We wish to estab-
lish the conditions under which a collection of
actions by a process can be treated as an atomic
block. In particular, we are interested in the
sequence of actions by a process that either:

1. precede the first receive of that process, or

2. begin with a receive and are followed by
some number of sends and local actions by
that same process.

A trace where these sequences are atomic (i.e.
not interleaved with other actions) we will call
an atomic trace. See Figures 4 and 5 for exam-
ples of atomic and nonatomic traces. A compu-
tation consisting only of atomic traces is called
an atomic computation.

Receive Properties. A receive is enabled-
stable if, once enabled, the execution of a send
on a different processor does not make it unen-
abled. This condition says nothing about what
happens when a receive on a different proces-
sor is executed. More formally, this property is
defined by:

(Vg:q#p
¢ [wp.p?.true = wp.(q!;p?).true]) (3)

Another useful (and common) property of re-
ceive actions is that when they are swapped
with a prior send action, they return the same
or stronger result if they return anything at all.
Such a receive is called send-monotonic. More
formally, this property is defined by:

(Vg:qg#p ()
: wp.(¢5;p?).Q = wip.(p?;¢!).Q])

This property can be weakened by requir-
ing that it hold only when the anticipated re-
ceive terminates. Such a receive is called weakly

send-monotonic. More formally, this property
is defined by:

(Vg:qg#p
: [wp.p?.true A wp.(¢l;p?).Q (5)
= wip.(p?; ¢).Q])

Send Property. The send operation is said
to commute exactly when two sends on differ-
ent processes can be exchanged in any trace
with no effect. More formally, this property is
defined by:

(Vg:q#p
: wlp.(pl; ¢).Q = wip.(¢}p).Q])

The symmetry in this equation allows us to use
the equivalent expression:

(Vg:q#0p
: [wlp-(ph ¢!)-Q = wip-(¢%p!)-Q])

7.3 Theorem,
Proofs

Corollary, and

Theorem. Any computation in a synchro-
nization system is a refinement of an atomic
computation if that synchronization system has
enabled-stable and weakly send-monotonic re-
ceives, as well as commuting sends.

Proof. Given an arbitrary computation, G,
we must establish the existence of an atomic
computation, A, such that every trace in G
is a refinement of some trace in A .

Consider a trace ¢ € G. If ¢ is not an
atomic trace, then there must exist a pair of ac-
tions of the form (iX;j!) or (iX;j#), where
i # j and X isoneof “!”, “?7” or “#”. For
each of these cases, we must show that swap-
ping these two actions yields a new trace, a,
such that:

1. g refines a, and

2. a is also an element of the computation

G.

For any finite trace, there exists a sequence of
such action swappings that produces an atomic
trace. In particular, consider the sequence of
swappings that builds an atomic trace from left

p | # # 212
q 200 8 # ?20 7?2 #1
r
Figure 4: An Atomic Trace
nonatomic
p
o} 200 48 # ? ? #
‘ i
nonatomic
Figure 5: A Nonatomic Trace
to right. That is, the first atomic block is con- 3. (174,
structed by swapping to the left, all sends and
local actions, for a given process, that occur 4. (i#:5#)
prior to that process’s next receive. Next, the 5. (il j#), and
second atomic block is constructed in the same W
way. Because the trace is finite, the required 6. (i7;5#) .
sequence of swaps is also finite and this proce-
dure yields an atomic trace. Case 1.
The first obligation corresponds to establish- o
ing (for all Q) wp. (7% z#)Q .
= { Definition of local actions, (2) }
[wp.g.true A wp.a.Q = wp.g.Q] wp.(i#;5!).Q

That is, since g is a trace in the computation,
it must be enabled. Hence we can assume that
g is enabled in proving that a is refined by g¢.

The second obligation corresponds to estab-
lishing

[wp.g.true = wp.a.true]

That is, if g is enabled, a is enabled as well.
We meet these obligations for each case for
g, of which there are six to consider:

(i#;41) ,
2. (il4h),

The second obligation follows, with @ =

true .
Case 2.

1l

1l

wp-(51;11).Q

{ Definition of wp }
wp.(jl; a).true A wip.(jl;4).Q

{ Definition of ; }
wp.jl.(wp.il.true) A wip.(5;4)).Q

{ Sends are always enabled, (1)
wip.(5%;41).Q

{ Sends commute, (7.2) }
wip.(i';3).Q

{ Sends are always enabled, (1)

}

}

wp.il.(wp.jl.true) A wip.(il;31).Q
{ Definition of ; }
wp.(1l; 7)) .true A wip.(i%;51).Q
{ Definition of wp }
wp.(il41).Q
Again, the second obligation follows, with
Q = true.
Case 3.

wp.i?.true A wp.(j1;i7).Q
= { Weak send-monotonicity, (5) }
wp.i?.true A wip.(i7;51).Q

= { Sends are always enabled, (1) }

wp.i?.(wp.jlirue) A wlp.(i?;5!).Q
{ Definition of ; }
wp.(17;4!).true A wip.(i?;5!).Q
{ Definition of wp }
wp.(i7;4).Q

Now our second obligation:

wp.(17;71).true
{ Definition of ; }
wp.i?.(wp.jl.true)
{ Sends are always enabled, (1)
wp.i?.true
= { Receive is enabled-stable, (3) }
wp.(4;1?).true

Cases 4-6.
wp.(j#;1X).Q

}

= { Definition of local actions, (2) }

wp.(iX; j#)-Q

The second obligation follows, with @ =
true .

Thus, each action swapping yields a trace re-
fined by the original trace in G and present in
G as well. Thus G is a refinement of the com-
putation with no “out of order” pairs; that is,

the corresponding atomic computation.
O

Corollary. Any computation in a synchro-
nization system is a refinement of an atomic
computation if that synchronization system has
enabled-stable and send-monotonic receives, as
well as commuting sends.

Proof. Any system that is send-monotonic is
also weakly send-monotonic. Hence the theo-
rem can be applied.

O

Aside. The proof of the theorem actually es-
tablishes the equivalence of the two computa-
tions. That is,

(AC G)A(GE 4

The second conjunct follows from the observa-
tion that the traces in A are a subset of the
traces in G . It is the first conjunct, however,
in which we are usually interested.

7.4 Equivalence of Strong and
Weak Send-monotonicity

The properties of send-monotonicity and weak
send-monotonicity are closely related. Send-
monotonicity is perhaps the easier of the two
to verify, as it has fewer conjuncts. In this
sense, the corollary is easier to apply than the
theorem. The requirements stipulated in the
corollary are stronger than those given in the
theorem, so establishing the corollary can be
applied suffices.

Unfortunately, the converse is not true. Es-
tablishing that the corollary requirements are
not met does not say anything about the ap-
plicability of the theorem. In particular, es-
tablishing that receives are not send-monotonic
does not establish whether or not the theorem
can be applied. Fortunately, in the restricted
(but common) case of deterministically termi-
nating receive actions, the two properties are
equivalent. Thus, for deterministically termi-
nating receive actions, if a system does not have
(strongly) send-monotonic receives, the theo-
rem cannot be applied.

A receive is said to be deterministically ter-
minating exactly when any state from which it
is not guaranteed to terminate, is a state from
which it is guaranteed to not terminate. More
formally, this property is defined by:

[~wp.p?.true = wlp.p?.false] (6)
The converse is true for nonmiraculous receives;
that is, receives for which wp.S.false is false.
(See Appendix A for the proof). For such re-
ceives, the above definition of deterministic ter-
mination can be rephrased as:

[~wp.p?.true = wlp.p?.false]

(7)

For any given global state, a deterministically
terminating receive is either enabled (i.e. guar-
anteed to terminate), or guaranteed not to ter-
minate.

The following result formally states the
equivalence of send-monotonicity and weak
send-monotonicity for deterministically termi-
nating receives.

Equivalence. For deterministically termi-
nating receives:

[wp.(g};p7).Q = wip.(p?; ¢).Q)]
= [wp.p?.true A wp.(g};p?).Q
= wip.(p?; ¢).Q)]

Proof. The forward direction is true triv-
ially. It remains to be shown, then, that
send-monotonicity follows from weak send-
monotonicity when the receive is determinis-
tically terminating.

wp-(¢%p?).Q

= { Weak send-monotonicity, (5) }
wip.(p?;¢)).Q V —~wp.p?.true

= { Deterministic. terminat., (6) }
wip.(p?; ¢!)).Q V wlp.p?.false

= { Monotonicity of wilp }
wip.(p?;¢)).Q V wip.p?.(wlp.q!.false)

= { Definition of ; }
wip.(p?;¢).Q V wip.(p?; q!).false

= { Property of wlp }
wip.(p?;¢)).(Q V false)

= { Identity of V }
wip.(p?; ¢!).Q

8 Examples of Theorem

Application

8.1 Shared Memory

In this section we describe some shared memory
synchronization paradigms to which our theo-
rem applies. Recall from our model of com-
putation that only synchronization actions can
access the shared state. Thus, we do not per-
mit sharing of general state that is accessible
through actions that are not a send or receive.

Single-assignment Variables. A single-
assignment, variable is a shared variable that
can be written (assigned) at most once. It is
initially undefined, and a process that attempts
to read an undefined single-assignment variable
suspends execution until the variable is written.
Writing and reading these variables correspond
to send and receive actions in our model of com-
putation.

These actions meet the requirements for the
corollary:

receive enabled-stable:
Once defined, a single-assignment variable
cannot be made undefined. Thus, a read
operation, once enabled, remains enabled.

receive send-monotonic: Any state in
which a write followed by a read termi-
nates and returns a value is also a state in
which the read followed by the write either
does not terminate (i.e. they involve the
same variable) or returns the same value
(i.e. they involve different variables).

sends commute: Two writes can be executed
in either order. In a correct program, these
writes must be to different variables and so
cannot be interfering.

Single-assignment variables are extremely
restrictive. The required send-monotonicity
property for our theorem allows an antici-
pated read to return the same or stronger re-
sult (if it is enabled). An anticipated read
with single-assignment variables, however, re-
turns exactly the same result (if it is enabled).
This observation suggests a weaker notion of
single-assignment variables, we call monotonic-
assignment variables, or monotonic variables
for short.
Monotonic Variables. Like single-
assignment variables, monotonic variables are
initially undefined. A process that attempts
to read such an undefined variable suspends.
Unlike single-assignment variables, however,
monotonic variables can be assigned multiple
times. Each assignment must be guaranteed to
increment the value of the variable. Also un-
like single-assignment variables, the read oper-
ation of monotonic variables is not determin-
istic. Reading a monotonic variable returns a

value equal to or less than the value of the vari-
able.

Such a monotonic variable meets the require-
ment of the corollary:

receive enabled-stable: Once defined,
a monotonic variable cannot be made un-
defined. (In this respect, it is similar to a
single-assignment variable). Thus, a read
operation, once enabled, remains enabled.

receive send-monotonic: If a read is now
anticipated, then the result (if the read
terminates) is stronger, since the range of
values that can be returned is smaller.

sends commute: The write operations that
increment the value of the monotonic vari-
able can be performed in either order.

Notice that the last requirement prevents
monotonic variables from having, for exam-
ple, both an increment and a double operation,
since these two operations, though both mono-
tonic, do not commute.

Semaphores. A semaphore is a shared non-
negative integer counter. A process can incre-
ment the value of the semaphore (the send ac-
tion). This action never suspends. A process
can also decrement the value of the semaphore
(the receive action). This action is enabled
only when the value of the semaphore is strictly
greater than 0.

Unlike the previous examples, once a receive
action is enabled, it is not guaranteed to re-
main so until it is executed. If the value of a
semaphore is 1, all the decrement (receive) ac-
tions are enabled. But once one of them com-
pletes, the rest are no longer enabled.

Nevertheless, the send and receive actions
clearly meet the requirements for the theorem:

receive enabled-stable: If the decrement ac-
tion is enabled, the value of the semaphore
is greater than 0. Performing an increment
on the semaphore does not make the decre-
ment unenabled.

receive send-monotonic: When an incre-
ment followed by a decrement is guaran-
teed to terminate in some set of states,
then either the decrement followed by the

increment would terminate in the same set
of states or it would not terminate.

sends commute: Since addition commutes,
the order of increment actions is not im-
portant.

The requirement for send-monotonicity
forces us to restrict decrement actions to those
that are not sensitive to the particular value
of the semaphore. In particular, we disallow a
decrement action that returns the current value
of the semaphore. On the other hand, we do
allow a decrement action that returns nonde-
terministically any value less than or equal to
the current value. Such a decrement is still
send-monotonic.

8.2 Distributed Memory

In this section we describe some distributed
memory synchronization paradigms to which
our theorem applies.

Blocking Receives. A simple paradigm for
communication in distributed-memory systems
is that of message passing over directed point-
to-point ordered first-in first-out channels. A
send action appends a message to a channel,
and a receive action removes a message from
the channel. A receive action is enabled exactly
when there is at least one message that has
been sent but not received.

These send and receive actions meet the re-
quirements for the corollary:

receive enabled-stable: If a receive action is
enabled, there is a message that has been
sent but not received. Another send action
cannot remove this message, so the receive
remains enabled.

receive send-monotonic: If a receive follow-
ing a send terminates returning a particu-
lar message, then anticipating the receive
causes it either to not terminate or to re-
turn the same message, since channels are
first-in first-out.

sends commute: Channels are point-
to-point, so sends from different processes
yield the same global state regardless of

the order in which they are executed. No-
tice that this is not the case if there is a
merge operation at the destination.

The channels described above are not imple-
mentable in practice because they are instanta-
neous: there is no delay between sending a mes-
sage and it being delivered. A message-passing
layer that has arbitrary but finite delay can be
modeled as another process in the computation
that is responsible for shuttling messages from
origin to destination. This process performs a
fair merge implicitly. Such a system meets the
requirements for the corollary.

A slightly weaker model that still meets the
requirement of the corollary is that of un-
ordered channels with blocking receive. In this
case the receive returns any message that has
been delivered but not yet received.

Weak Probes. A weak probe is an action
that queries the message-passing layer. It re-
turns false when there is no delivered mes-
sage to receive. Otherwise, it returns true or
false nondeterministically. This nondetermin-
ism distinguishes this action from a traditional
probe.

These probes (and the usual message-passing
sends) meet the requirement for the corollary:

receive enabled-stable: Weak probes are al-
ways enabled. Hence, they are enabled-
stable.

receive send-monotonic: If a send followed
by a weak probe is guaranteed to return
a value, that value must be false. There
must be no message pending. In this case,
reversing the order of the actions has no
effect.

sends commute: This argument is the same
as given above.

8.3 Failure Cases

In this section we explore the limits of the the-
orem by illustrating three synchronization sys-
tems for which it does not apply. For each
example we specify how the system fails to
meet the necessary requirements. We also de-
scribe how a program could be written to de-
tect the difference between a general and an

p: !'xto g g : repeat
lyto ¢ skip
until (? x from p)
if (7 y from p)
then ok
else error

Figure 6: Program with General Probes

atomic computation (thus proving that the for-
mer does not refine the latter).

General Probes. General probes give more
information than the weak probes described
above. In addition to returning false when
there is no pending message, they are also guar-
anteed to return true when there is a pending
message. These probes are not send-monotonic
because there is a state such that a send fol-
lowed by a probe is guaranteed to return true,
whereas reversing these actions returns false;
namely, the state where the channel is empty
(for a send and a probe on this empty channel).

On the other hand, general probes are
clearly deterministically terminating. There-
fore, send-monotonicity is equivalent to weak
send-monotonicity. Since probes are not
send-monotonic, they are not weakly send-
monotonic. Hence the theorem cannot be ap-
plied.

Figure 6 gives a program that illustrates the
difference between atomic and general compu-
tations in this system. This program is guar-
anteed to terminate in the state ok for atomic
computations, but not for general computa-
tions.

Stack-based Channels. Channels are com-
monly modeled either as queues or as sets. For
the former, a receive action removes a message
from the head of the queue, and for the later
a receive action removes an arbitrary element
of the set. We could envision, however, a chan-
nel modeled as a stack, where receive actions
remove messages from the top, where they are
also inserted by send actions.

Such a system, however, would not satisfy
the requirements of the theorem. In partic-
ular, the receive is not send-monotonic. Due

p: !'1to ¢ q: ? xfrom p
12to ¢ if (x =2)
then ok
else error

Figure 7: Program with Stack-based Channels

to the stack nature of the channel, the mes-
sage received is the most recent message sent.
Thus, if a receive is anticipated prior to a send,
an entirely different message could be received.
Since the receive is deterministically terminat-
ing, however, this is sufficient to show that the
theorem cannot be applied.

Figure 7 gives a program that illustrates the
difference between atomic and general compu-
tations in this system. This program is guar-
anteed to terminate in the state ok for atomic
computations (since process ¢ must receive
the value 2), but not for general computations
(since process ¢ could receive a value before p
has completed all its sends).

Gate Synchronization. In this paradigm
of synchronization, processes share variables
known as gates. A gate is in one of two states:
open or closed. Initially a gate is closed. Two
operations are permitted on gate: a wait and a
toggle. A process executing a wait on a closed
gate suspends. A wait can only complete when
the gate is open. A toggle has the effect of clos-
ing a gate if it is open and opening a gate if it
is closed.

The receive action in this system (i.e. the
wait) is not enabled-stable. That is, if it is
enabled there is no guarantee that it remains
enabled if preceded by a send (i.e. a toggle).

Figure 8 gives a program that illustrates the
difference between atomic and general compu-
tations in this system. This program is guar-
anteed to terminate in the state ok for atomic
computations, but not for general computa-
tions.

8.4 Theorem vs. Corollary

The corollary is more restrictive than the the-
orem. It imposes the requirement that the re-
ceives be send-monotonic, which is more strin-

p: I'x q: ?7 x = error
I'x I ?y — ok
Ly

Figure 8: Program with Gate Synchronization

gent than the corresponding requirement in
the theorem (that of weak send-monotonicity).
Therefore, there are systems to which the theo-
rem applies (i.e. have weakly send-monotonic
receives) but to which the corollary does not.

As a simple example of such a system, con-
sider receives that are nondeterministic when
they are not enabled. In particular, if there
is no pending message, then a receive either
returns an arbitrary value or does not termi-
nate. Notice that such a receive is not danger-
ous since it is not enabled, and so cannot be
selected for execution. Nevertheless, it is not
send-monotonic.

This might be a cause for concern since we
have only modified the semantics of an action
that cannot be selected, and yet the corollary is
no longer applicable! However, our equivalence
result of weak and strong send-monotonicity is
predicated on the receive being deterministi-
cally terminating. Since the receive action as
described above is not deterministically termi-
nating, the equivalence does not hold and we
should check the requirements given by the the-
orem instead of those given by the corollary.
Doing this we see that the system is still weakly
send-monotonic and hence the theorem still ap-
plies.

9 Conclusions

Atomic blocks are critical to reasoning about
the correctness of parallel and distributed sys-
tems. Many paradigms exist for explicitly cre-
ating critical sections of atomically executing
instructions, but these synchronization bottle-
necks are expensive and should be avoided
when possible. A theorem has existed for con-
siderable time in the distributed-systems com-
munity that receive actions can be considered
atomic with subsequent sends, since a send ac-
tion is insensitive to the state of the message-

passing layer. Treating distributed programs in
this manner has simplified formal and informal
arguments of correctness.

The contribution of this paper is a novel
validation of this useful theorem and its ex-
tension to systems that exhibit nondetermin-
istic termination. QOur emphasis has been on a
precise characterization of the synchronization
primitives required for application of the theo-
rem. Armed with a formal definition of these
properties we have verified that the theorem
is applicable to a variety of real synchroniza-
tion systems, ranging from point-to-point mes-
sage passing over ordered channels to shared-
memory monotonic-assignment variables.

A Deterministically Termi-
nating, Nonmiraculous
Receives

If a receive action is nonmiraculous (that is,
satisfies wp.?.false = false), then the property
expressed in (6) is equivalent to the seemingly
stronger property (7).

We must show:

[wlp.p?.false = —wp.p?.true]

Proof.

wlp.p?.false
= { Weakening }
—wp.p?.true V wlp.p?.false
= { Law of Excluded Middle,
and Identity of A }
(—wp.p?.true V wp.p?.true)
A (—wp.p?.true V wlp.p?.false)
= { Distribution of VvV over A }
—wp.p?.true
V (wp.p?.true A wip.p?.false)
= { Definition of wp }
—wp.p?.true V wp.p?.false
= { Receive is nonmiraculous,
so [wp.p?.false = false] }
—wp.p?.true V false
= { Identity of V }
—wp.p?.true

O

Acknowledgments

Thanks to several anonymous CASCONrefer-
ees for pointing out some related work and
for many suggestions that improved the paper.
Thanks as well to the Compositional Systems
Research Group at Caltech for comments on
earlier drafts.

The author was funded in part by an IBM
Cooperative Computer Science Fellowship.

About the Author

Paul Sivilotti is an Assistant Professor in the
Department of Computer and Information Sci-
ence at The Ohio State University. He received
his B.Sc.H. degree from Queen’s University in
1991 and his M.S. and Ph.D. degrees from Cal-
tech in 1993 and 1998 respectively. He has
been a recipient of an NSERC ’67 Fellowship
as well as an IBM Cooperative Computer Sci-
ence Fellowship. He can be reached by e-mail
at paolo@cis.ohio-state.edu.

References

[1] R. J. R. Back. On correct refinements of
programs. Journal of Computer and Sys-
tem Sciences, 23:49-68, 1981.

[2] R.J.R. Back. A method for refining atom-
icity in parallel algorithms. In G. Goos and
J. Hartmanis, editors, PARLE ’89, vol-
ume II, pages 199-216, Berlin, June 12-16
1989. Available as LNCS 366, Springer-
Verlag.

[3] Edsger W. Dijkstra. A Discipline of Pro-
gramming. Prentice-Hass Series in Auto-
matic Computation. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1976.

[4] Edsger W. Dijkstra and C. S. Scholten.
Termination detection for diffusing com-
putations. Information Processing Letters,
11(1):1-4, August 1980.

[5] Edsger W. Dijkstra and Carel S. Scholten.
Predicate Calculus and Program Seman-
tics. Texts and Monographs in Computer
Science. Springer-Verlag, 175 Fifth Av-
enue, New York, New York 10010, 1990.

[6] Thomas W. Doeppner, Jr. Parallel pro-
gram correctness through refinement. In

[8]

[10]

[11]

[12]

[13]

[14]

Fourth ACM Symposium on Principles of
Programming Languages, pages 155-169,
1133 Avenue of the Americas, New York,
New York 10036, January 17-19 1977.
ACM.

Leslie Lamport. A theorem on atomicity in
distributed algorithms. Distributed Com-
puting, 4(2):59-68, 1990.

Leslie Lamport and Fred B. Schneider.
Pretending atomicity. Technical Re-
port 44, Digital Systems Research Center,
Palo Alto, California, May 1989.

Harry R. Lewis and Christos H. Papadim-
itriou. FElements of the Theory of Com-
putation. Prentice-Hall Software Series.
Prentice-Hall, Inc., Englewood Cliffs, New
Jersey 07632, 1981.

Richard J. Lipton. Reduction: A method
of proving properties of parallel programs.
CACM, 18(12):717-721, December 1975.

Zohar Manna and Amir Pnueli. The
Temporal Logic of Reactive and Concur-
rent Systems, volume 1. Specification.
Springer-Verlag, 175 Fifth Avenue, New
York, New York 10010, 1992.

Jayadev Misra and K. M. Chandy. Ter-
mination detection of diffusing computa-
tions in communicating sequential pro-
cesses. ACM Transactions on Program-
ming Languages and Systems, 4(1):37-43,
January 1982.

Carroll Morgan. The specification state-
ment. ACM Transactions on Program-
ming Languages and Systems, 10(3):7-30,
July 1988.

Joseph M. Morris. A theoretical basis for
stepwise refinement and the progamming
calculus. Science of Computer Program-
ming, 9(3):287-306, 1987.

